PIE LTER Publications

Export 12 results:
Filters: Keyword is metabolism  [Clear All Filters]
Journal Article
Raymond P.A, Bauer J.E., Cole J.J..  2000.  Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River Estuary.. Limnology and Oceanography. 45:1707-1717.
Vallino J.J..  2010.  Ecosystem biogeochemistry considered as a distributed metabolic network ordered by maximum entropy production.. Philosophical Transactions of The Royal Society B. 365:1417-1427.
Hope A.J., McDowell W.H., Wollheim W.M..  2013.   Ecosystem metabolism and nutrient uptake in an urban, piped headwater stream. Biogeochemistry.
Raymond P.A, Cole J.J..  2001.  Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. Estuaries. 24:312-217.
Johnston M.E, Cavatorta J.R., Hopkinson C.S., Valentine V..  2003.  Importance of metabolism in the development of salt marsh ponds.. Biological Bulletin. 205:248-249.
Vallino J.J..  2003.  Modeling microbial consortiums as distributed metabolic networks. Biological Bulletin. 204:174-179.
Howard E.M., Spivak A.C., Karolewski J.S., Gosslein K.M., Sandwidth Z.O., Manning C.C., Stanley R.H.R.  2020.  Oxygen and Triple Oxygen Isotope Measurements Provide Different Insights into Gross Oxygen Production in a Shallow Salt Marsh Pond.. Estuaries and Coasts.
Spivak A.C., Denmark A., Gosselin K., Sylva S.P..  2020.  Salt Marsh Pond Biogeochemistry Changes Hourly to Yearly but Does Not Scale With Dimensions or Geospatial Position. Journal of Geophysical Research: Biogeosciences. 125
Spivak AC, Denmark A, Gosselin KM, Sylva SP.  2020.  Salt Marsh Pond Biogeochemistry Changes Hourly-to-Yearly but Does Not Scale With Dimensions or Geospatial Position. Journal of Geophysical Research: Biogeosciences. 125:e2020JG005664.
Logan J., Hass H., Deegan L.A., Gaines E..  2006.  Turnover rates of nitrogen stable isotopes in the salt marsh mummichog, Fundulus heteroclitus, following a laboratory diet switch.. Oecologia. 147:391-395.