PIE LTER Publications

Export 587 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
J
Johnson D.S., Shields J.D., Doucette D., Heard R..  2020.  A climate migrant escapes its parasites. Marine Ecological Progress Series. 641:111-121.
Johnson D.S., Warren R.S., Deegan L.A., Mozdzer T.J..  2016.  Saltmarsh plant responses to eutrophication. Ecological Applications.
Johnson D.S..  2014.  Fiddler on the roof: a northern range extension for the marsh fiddler crab Uca pugnax. Journal of Crustacean Biology. 34:671-673.
Johnson D.S., Short M.I..  2013.  Chronic nutrient enrichment increases the density and biomass of the mudsnail, Nassarius obsoletus.. Estuaries and Coasts. 36:28-35.
Johnson D.S..  2011.  High-marsh invertebrates are susceptible to eutrophication. Marine Ecological Progress Series. 438:142-152.
Johnson DS.  2022.  Are amphipods Orchestia grillus (Bosc, 1802) (Amphipoda: Talitridae) infected with the trematode Levinseniella byrdi (Heard, 1968) drawn to the light? Journal of Crustacean Biology. 42(2)
Johnson D.S., Martinez-Soto K.S., Pant M., Wittyngham S.S, Goetz E.M..  2020.  The fiddler crab Minuca pugnax () (Decapoda: Brachyura: Ocypodidae) reduces saltmarsh algae in its expanded range . Journal of Crustacean Biology.
Johnson D.S., Heard R..  2017.  Bottom-up control of parasites. Ecosphere. 8
Johnson D.S., Fleeger J.W..  2009.  Weak response of saltmarsh infauna to ecosystem-wide nutrient enrichment and fish predator reduction: A four-year study. Journal of Experimental Marine Biology and Ecology. 373:35-44.
Johnson D.S..  2015.  The savory swimmer swims North: A northern range extension of the blue crab Callinectes sapidus? Journal of Crustacean Biology. 35:105-110.
Johnson D.S., Crowley C., Longmire K., Nelson J.A., Williams B., Wittyngham S..  2019.  The fiddler crab, Minuca pugnax, follows Bergmann’s rule.. Ecology and Evolution. 9:14489-14497.
Johnson D.S., Williams B.L..  2017.  Sea level rise may increase extinction risk of a saltmarsh ontogenetic habitat specialist. Ecology and Evolution.
Johnson D.S., Jessen B.J..  2008.  Do spur-throated grasshoppers, Melanoplus spp. (Orthoptera: Acrididae), exert top-down control on smooth cordgrass Spartinaalterniflora in northern New England? Estuaries and Coasts. 31:912-919.
Johnson D.S..  2008.  Trophic control of saltmarsh invertebrates. Ph.D.
Johnson D.S., Fleeger J.W., Deegan L.A..  2009.  Large-scale manipulations reveal that top-down and bottom-up controls interact to alter habitat utilization by saltmarsh fauna. Marine Ecology Progress Series. 377:33-41.
Johnston M.E, Cavatorta J.R., Hopkinson C.S., Valentine V..  2003.  Importance of metabolism in the development of salt marsh ponds.. Biological Bulletin. 205:248-249.
Jr. J.D.Edwards.  2016.  Applicability of LiDAR Technology in Saltmarshes: Landscape-Scale Predictive Models to Local-Scale Biomass Estimation. M.S.:134.
K
Kaushal S.S., McDowell W.H., Wollheim W.M., Johnson T.A.Newcomer, Mayer P.M., Belt K.T., Pennino M.J..  2015.  Urban evolution: the role of water. Water Resources Research. 7:4063-4087.
Kaushal S.S., McDowell W.H., Wollheim W.M..  2014.  Tracking evolution of urban biogeochemical cycles: past, present, and future. Biogeochemistry. 121:1-21.
Kearney W.S., Mariotti G., Deegan L.A, Fagherazzi S..  2017.  Stage-discharge relationship in tidal channels. Limnology and Oceanography. 15:394-407.
Kearney WS, Fernandes A, Fagherazzi S.  2019.  Sea-level rise and storm surges structure coastal forests into persistence and regeneration niches. PLOS ONE. 14:e0215977.
Kearney W.S..  2018.  Signals of Nonlinear, Multiscale and Stochastic Processes in Coastal Landscapes. PhD
Kearney W.S., Fagherazzi S..  2016.  Salt marsh vegetation promotes efficient tidal channel networks. Nature Communications. 7
Kearns P.J., Bulseco-McKim A.N., Hoyt H., Angell J.H., Bowen J.L..  2018.  Nutrient Enrichment Alters Salt Marsh Fungal Communities and Promotes Putative Fungal Denitrifiers. Microbial Ecology.
Kearns P.J., Holloway D., Angell J.H., Feinman S.G., Bowen J.L..  2017.  Effect of short-term, diel changes in environmental conditions on active microbial communities in a salt marsh pond. Aquatc Microbial Ecology. 80:29-41.

Pages