PIE LTER Publications

Export 629 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Sweeney J., Deegan L., Garritt R..  1998.  Population size and site fidelity of Fundulus heteroclitus in a macrotidal saltmarsh creek. Biological Bulletin. 195:238-239.
Sundareshwar P.V., Morris J.T., Pellechia P.J., Cohen H.J., Porter D.E., Jones B.C..  2001.  Occurrence and Ecological Implications of Pyrophosphate in Estuaries. Limnology and Oceanography. 46:1570-1577.
Sundareshwar P.V., Morris J.T., Koepfler E.K., Fornwalt B..  2003.  Phosphorus Limitation of Coastal Ecosystem Processes. Science. 299
Sun S., Fagherazzi S., Liu Y..  2018.  Classification mapping of salt marsh vegetation byflexible monthly NDVItime-series using Landsat imagery. Estuarine and Coastal Shelf Science. 213:61-80.
Sullivan H.L..  2014.  The effects of nitrate fertilization on the photosynthetic performance of the salt marsh cordgrass, Spartina alterniflora. M.S.
Sturdy L.  2018.  Herbivory and Predation Patterns in Salt Marsh Habitats of Varying Size and Varying Distribution of Spartina alterniflora and S. patens . BS
Stumpf A.  2020.  Tidal marsh response to sediment deposition from tropical and extratropical storms. MS thesis. M.S.
Strzempko J, Pontius RGilmore.  2023.  The Flow Matrix Offers a Straightforward Alternative to the Problematic Markov Matrix. Land. 12:1471.
Stopak S, Nordio G, Fagherazzi S.  2022.  Quantifying the Importance of Ice-Rafted Debris to Salt Marsh Sedimentation Using High Resolution UAS Imagery. Remote Sensing. 14:5499.
Stewart L.C., Algar C.K., Fortunato C.S., Larson B.I., Vallino J.J., Huber J.A., Butterfield D.A., Holden J.F..  2019.  Fluid geochemistry, local hydrology, and metabolic activity define methanogen community size and composition in deep-sea hydrothermal vents. ISME.
Stewart R.J., Wollheim W.M., Gooseff M., Briggs M.A., Jacobs J.M., Peterson B.J., Hopkinson C.S..  2011.  Separation of river network scale nitrogen removal among main channel and two transient storage compartments. Water Resources Research. 47
Stewart R..  2009.  Separation of river network scale nitrogen removal between surface and hyporheic transient storage compartments.. M.S.
Steele M.K., Heffernan J.B., Bettez N.D., Cavender-Bares J., Groffman P.M., Grove J.M., Hall S., Hobbie S.E., Larson K., Morse J.L. et al..  2014.  Convergent Surface Water Distributions in U.S. Cities. Ecosystems.
Spivak A.C., Ossolinski J..  2016.  Limited effects of nutrient enrichment on bacterial carbon sources in salt marsh tidal creek sediments. Marine Ecological Progress Series. 544:107-130.
Spivak A.C., Sanderman J., Bowen J.L., Canuel E.A., Hopkinson C.S..  2019.  Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nature Geoscience. 12:685-692.
Spivak AC, Denmark A, Gosselin KM, Sylva SP.  2020.  Salt Marsh Pond Biogeochemistry Changes Hourly-to-Yearly but Does Not Scale With Dimensions or Geospatial Position. Journal of Geophysical Research: Biogeosciences. 125:e2020JG005664.
Spivak A.C., Denmark A., Gosselin K., Sylva S.P..  2020.  Salt Marsh Pond Biogeochemistry Changes Hourly to Yearly but Does Not Scale With Dimensions or Geospatial Position. Journal of Geophysical Research: Biogeosciences. 125
Spivak A.C., Gosselin K., Howard E., Mariotti G., Forbrich I., Stanley R., Sylva S.P..  2017.  Shallow ponds are heterogeneous habitats within a temperate salt marsh ecosystem. Journal of Geophysical Research: Biogeosciences. 122
Spivak A.C., Gosselin K.M, Sylva S.P..  2018.  Shallow ponds are biogeochemically distinct habitats in salt marsh ecosystems. Limnology and Oceanography.

Pages