PIE LTER Publications
Criteria to Confirm Models that Simulate Deforestation and Carbon Disturbance. Landscape and Ecological Engineering.
.
2018. Creating spatially-explicit lawn maps without classifying remotely sensed imagery: The case of suburban Boston, Massachusetts, USA. Cities and the Environment. 7
.
2014. .
2014. Controls on the variability of organic matter and dissolved inorganic carbon age in northeast U.S. rivers. Marine Chemistry. 92:353-366.
.
2004. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth's Future. 4:110-121.
.
2016. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds.. Chemical Geology. 266:318-327.
.
2009. Constraining Marsh Carbon Budgets Using Long-Term C Burial and Contemporary Atmospheric CO2 Fluxes. Journal of Geophysical Research: Biogeosciences. 123:867-878.
.
2018. Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuaries and Coasts. 31:477-491.
.
2008. Component intensities to relate difference by category with difference overall. International Journal of Applied Earth Observation and Geoinformation.
.
2019. Competition among marsh macrophytes by means of geomorphological displacement in the intertidal zone.. Estuarine and Coastal Shelf Science. 69:395-402.
.
2006. Comparison of Intensity Analysis and the land use dynamic degrees to measure land changes outside versus inside the coastal zone of Longhai, China. Ecological Indicators. 89:336-347.
.
2018. Comparison of fish assemblages in tidal salt marsh creeks and in adjoining mudflat areas in the Tejo estuary.. Cahiers de Biologie Marine. 45:213-224.
.
2004. Coastal eutrophication as a driver of salt marsh loss. Nature. 490:388-392.
.
2012. Climate variability masks the impacts of land use change on nutrient export in a suburbanizing watershed. Biogeochemistry.
.
2014. A climate migrant escapes its parasites. Marine Ecological Progress Series. 641:111-121.
.
2020. Classification mapping of salt marsh vegetation byflexible monthly NDVItime-series using Landsat imagery. Estuarine and Coastal Shelf Science. 213:61-80.
.
2018. Chronic nutrient enrichment increases the density and biomass of the mudsnail, Nassarius obsoletus.. Estuaries and Coasts. 36:28-35.
.
2013. Characterizing a New England Saltmarsh with NASA G-LiHT Airborne Lidar. Remote Sensing. 11:509-539.
.
2019. The changing carbon cycle of the coastal ocean.. Nature. 504:61-70.
.
2013. Changes in salt marsh vegetation, Phragmites australis, and nekton in response to increased tidal flushing in a New England salt marsh.. Wetlands. 26:544-557.
.
2006. Changes in hydrodynamics and wave energy as a result of seagrass decline along the shoreline of a microtidal back-barrier estuary.. Advances in Water Resources. 128:183-192.
.
2019. Causes and Consequences of Ecosystem Service Regionalization in a Coastal Suburban Watershed. Estuaries and Coasts.
.
2013. Carbon sequestration in wetland dominated coastal systems — a global sink of rapidly diminishing magnitude. Current Opinion in Environmental Sustainability. 4:186-194.
.
2012. Building a database of historic land cover to detect landscape change.. Biological Bulletin. 205:257-258.
.
2003. .
2013.