%0 Journal Article %J AGU Advances %D 2021 %T Coastal Wetland Resilience, Accelerated Sea-Level Rise, and the Importance of Timescale %A Törnqvist, Torbjörn E. %A Cahoon, Donald R. %A Morris, James T. %A Day, John W. %K coastal wetlands %K sea-level rise %X Recent studies have produced conflicting results as to whether coastal wetlands can keep up with present-day and future sea-level rise. The stratigraphic record shows that threshold rates for coastal wetland submergence or retreat are lower than what instrumental records suggest, with wetland extent that shrinks considerably under high rates of sea-level rise. These apparent conflicts can be reconciled by recognizing that many coastal wetlands still possess sufficient elevation capital to cope with sea-level rise, and that processes like sediment compaction, ponding, and wave erosion require multidecadal or longer timescales to drive wetland loss that is in many cases inevitable. %B AGU Advances %V 2 %P e2020AV000334 %G eng %U https://onlinelibrary.wiley.com/doi/abs/10.1029/2020AV000334 %R 10.1029/2020AV000334 %0 Journal Article %J Ecosphere %D 2017 %T Bottom-up control of parasites %A Johnson, D.S. %A Heard, R. %K coastal wetlands %K disease ecology %K disturbance %K eutrophication %K fertilizer %K host traits %K inorganic nutrients %K intertidal %K LTER-PIE %K population dynamics %B Ecosphere %V 8 %G eng %M PIE437 %3 DEB 0816963, DEB 0213767, DEB 1354494, OCE 0923689, OCE 0423565, OCE 0924287 %] NSF-LTER-PIE %R 10.1002/ecs2.1885 %F Journal Article %0 Book Section %B Recarbonization of the Bioshpere: Ecosystem and Global Carbon Cycle. %D 2012 %T Assessment of Carbon Sequestration Potential in Coastal Wetlands. %A Morris, J.T. %A Edwards, J. %A Crooks, S. %A Reyes, E. %E Lal, R. %E Lorenz, K. %E Hüttl, R. %E Schneider, B.U. %E von Braun, J. %K anthropogenic disturbance %K autochthonous %K carbon sequestration %K carbon stocks %K coastal ecosystems %K coastal wetlands %K digital elevation model %K diking %K disturbance %K drainage %K holocene %K LTER-PIE %K mangroves %K marsh equilibrium model %K organic matter %K organic rich soil %K primary production %K sea level rise %K subsidence %K suspended solids %K tidal amplitude %K tidal marshes %K tide range %B Recarbonization of the Bioshpere: Ecosystem and Global Carbon Cycle. %I Springer %P 517-531 %G eng %M PIE303 %] NSF-LTER-PIE %R 10.1007/978-94-007-4159-1_24 %F Book Section %0 Journal Article %J Wetlands Ecology and Management %D 2009 %T Effects of regular salt marsh haying on marsh plants, algae, invertebrates and birds at Plum Island Sound, Massachusetts %A Buchsbaum, R.N. %A Deegan, L.A. %A Horowitz, J. %A Garritt, R.H. %A Ludlam, J.P. %A Shull, D. H. %K coastal wetlands %K disturbance %K haying %K LTER-PIE %K Orchestia %K organic matter %K primary production %K salt marsh %K shorebirds %K Spartina %K stable isotopes %B Wetlands Ecology and Management %V 17 %P 469-487 %G eng %M PIE185 %] NSF-LTER-PIE %R 10.1007/s11273-008-9125-3 %F Journal Article %0 Journal Article %J Estuaries and Coasts %D 2008 %T Consequences of climate change on the ecogeomorphology of coastal wetlands %A Day, J.W. %A Christian, R.R. %A Boesch, D.M. %A Yanez-Arancibia, A. %A Morris, J.T. %A Twilley, R.R. %A Naylor, L. %A Schaffner, L. %A Stevenson, C. %K climate change %K coastal wetlands %K disturbance %K ecogeomorphology %K LTER-PIE %K organic matter %K primary production %B Estuaries and Coasts %V 31 %P 477-491 %G eng %M PIE198 %] NSF-LTER-PIE %R 10.1007/s12237-008-9047-6 %F Journal Article %0 Journal Article %J Ecology %D 2002 %T Responses of coastal wetlands to rising sea level %A Morris, J. %A Sundareshwar, P.V. %A Nietch, C.T. %A Kjerfve, B %A Cahoon, D.R. %K coastal wetlands %K LTER-PIE %K model %K optimal elevation %K organic matter %K salt marsh %K sea-level rise %K sediment accretion %K sedimentation %K Spartina %B Ecology %V 83 %P 2869-2877 %G eng %M PIE87 %] NSF-LTER-PIE %R 10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2 %F Journal Article