%0 Journal Article %J Applied and Environmental Microbiology %D 2023 %T Diversity at single nucleotide to pangenome scales among sulfur cycling bacteria in salt marshes %A Pérez Castro, Sherlynette %A Peredo, Elena L. %A Mason, Olivia U. %A Vineis, Joseph %A Bowen, Jennifer L. %A Mortazavi, Behzad %A Ganesh, Anakha %A Ruff, S. Emil %A Paul, Blair G. %A Giblin, Anne E. %A Cardon, Zoe G. %E Glass, Jennifer B. %B Applied and Environmental Microbiology %V 89 %8 May-11-2025 %G eng %U https://journals.asm.org/doi/10.1128/aem.00988-23 %N 11 %! Appl Environ Microbiol %R 10.1128/aem.00988-23 %0 Journal Article %J Annals of the American Association of Geographers %D 2023 %T Four Fundamental Questions to Evaluate Land Change Models with an Illustration of a Cellular Automata–Markov Model %A Viana, Cláudia M. %A Pontius Jr., Robert Gilmore %A Rocha, Jorge %K análisis de sensibilidad %K CA-Markov %K CA–Markov %K IDRISI software %K IDRISI软件 %K sensitivity analysis %K software IDRISI %K validación %K Validation %K verificación %K verification %K 敏感性分析 %K 确认 %K 验证 %X Numerous models exist for users to simulate land change to communicate with an audience concerning future land change. This article raises four fundamental questions to help model users decide whether to use any model: (1) Can the user understand the model? (2) Can the audience understand the model? (3) Can the user control the model? (4) Does the model address the goals of the specific application? This article applies these questions to the popular cellular automata–Markov (CA–Markov) model as IDRISI’s CA–Markov module expresses. Sensitivity analysis examines 120 ways to set the module’s parameters. Verification compares the module’s behavior to the software’s documentation. Results show that the cellular automata’s allocation fails to follow the quantity of change that the Markov module computes. The module’s behavior is likely to cause users to misinterpret the validation metrics and to miscommunicate with audiences. Thus, the answers to the four questions were not satisfactory for this article’s case study. This article’s framework helps users to judge a model’s appropriateness for a specific application by combining sensitivity analysis with verification in a manner that helps to interpret validation. Users should answer the four questions as they decide whether to use any software’s modules. %B Annals of the American Association of Geographers %V 113 %P 2497–2511 %G eng %U https://doi.org/10.1080/24694452.2023.2232435 %R 10.1080/24694452.2023.2232435 %0 Journal Article %J FEMS Microbiology Letters %D 2023 %T Microbial chemolithoautotrophs are abundant in salt marsh sediment following long-term experimental nitrate enrichment %A Vineis, Joseph H %A Bulseco, Ashley N %A Bowen, Jennifer L %B FEMS Microbiology Letters %V 370 %8 May-01-2024 %G eng %U https://academic.oup.com/femsle/article/doi/10.1093/femsle/fnad082/7237467 %N 12881 %R 10.1093/femsle/fnad082 %0 Journal Article %J Geophysical Research Letters %D 2023 %T Sediment Exchange Across Coastal Barrier Landscapes Alters Ecosystem Extents %A Reeves, I. R. B. %A Moore, L. J. %A Valentine, K. %A Fagherazzi, S. %A Kirwan, M. L. %B Geophysical Research Letters %V 5017 %8 Jul-17-2023 %G eng %U https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023GL103680 %N 143 %! Geophysical Research Letters %R 10.1029/2023GL103680 %0 Journal Article %J Earth Surface Dynamics %D 2022 %T Biogeomorphic modeling to assess the resilience of tidal-marsh restoration to sea level rise and sediment supply %A Gourgue, Olivier %A van Belzen, Jim %A Schwarz, Christian %A Vandenbruwaene, Wouter %A Vanlede, Joris %A Belliard, Jean-Philippe %A Fagherazzi, Sergio %A Bouma, Tjeerd J. %A van de Koppel, Johan %A Temmerman, Stijn %X There is an increasing demand for the creation and restoration of tidal marshes around the world, as they provide highly valued ecosystem services. Yet restored tidal marshes are strongly vulnerable to factors such as sea level rise and declining sediment supply. How fast the restored ecosystem develops, how resilient it is to sea level rise, and how this can be steered by restoration design are key questions that are typically challenging to assess due to the complex biogeomorphic feedback processes involved. In this paper, we apply a biogeomorphic model to a specific tidal-marsh restoration project planned by dike breaching. Our modeling approach integrates tidal hydrodynamics, sediment transport, and vegetation dynamics, accounting for relevant fine-scale flow–vegetation interactions (less than 1 m2) and their impact on vegetation and landform development at the landscape scale (several km2) and in the long term (several decades). Our model performance is positively evaluated against observations of vegetation and geomorphic development in adjacent tidal marshes. Model scenarios demonstrate that the restored tidal marsh can keep pace with realistic rates of sea level rise and that its resilience is more sensitive to the availability of suspended sediments than to the rate of sea level rise. We further demonstrate that restoration design options can steer marsh resilience, as they affect the rates and spatial patterns of biogeomorphic development. By varying the width of two dike breaches, which serve as tidal inlets to the restored marsh, we show that a larger difference in the width of the two inlets leads to higher biogeomorphic diversity in restored habitats. This study showcases that biogeomorphic modeling can support management choices in restoration design to optimize tidal-marsh development towards sustainable restoration goals. %B Earth Surface Dynamics %V 10 %P 531–553 %G eng %U https://esurf.copernicus.org/articles/10/531/2022/ %R 10.5194/esurf-10-531-2022 %0 Journal Article %J Frontiers in Environmental Science %D 2022 %T Dominance of Diffusive Methane Emissions From Lowland Headwater Streams Promotes Oxidation and Isotopic Enrichment %A Robison, Andrew L. %A Wollheim, Wilfred M. %A Perryman, Clarice R. %A Cotter, Annie R. %A Mackay, Jessica E. %A Varner, Ruth K. %A Clarizia, Paige %A Ernakovich, Jessica G. %X Inland waters are the largest natural source of methane (CH 4 ) to the atmosphere, yet the contribution from small streams to this flux is not clearly defined. To fully understand CH 4 emissions from streams and rivers, we must consider the relative importance of CH 4 emission pathways, the prominence of microbially-mediated production and oxidation of CH 4 , and the isotopic signature of emitted CH 4 . Here, we construct a complete CH 4 emission budgets for four lowland headwater streams by quantifying diffusive CH 4 emissions and comparing them to previously published rates of ebullitive emissions. We also examine the isotopic composition of CH 4 along with the sediment microbial community to investigate production and oxidation across the streams. We find that all four streams are supersaturated with respect to CH 4 with diffusive emissions accounting for approximately 78–100% of total CH 4 emissions. Isotopic and microbial data suggest CH 4 oxidation is prevalent across the streams, depleting approximately half of the dissolved CH 4 pool before emission. We propose a conceptual model of CH 4 production, oxidation, and emission from small streams, where the dominance of diffusive emissions is greater compared to other aquatic ecosystems, and the impact of CH 4 oxidation is observable in the emitted isotopic values. As a result, we suggest the CH 4 emitted from small streams is isotopically heavy compared to lentic ecosystems. Our results further demonstrate streams are important components of the global CH 4 cycle yet may be characterized by a unique pattern of cycling and emission that differentiate them from other aquatic ecosystems. %B Frontiers in Environmental Science %V 9 %P 791305 %G eng %U https://www.frontiersin.org/articles/10.3389/fenvs.2021.791305/full %R 10.3389/fenvs.2021.791305 %0 Thesis %D 2022 %T Nutrient influence on microbial structure and function within salt marsh sediments %A Vineis, J. H %K community dynamics %K LTER-PIE %K microbes %K nutrients %K salt marsh %K sediments %I Northeastern University %V Ph.D. %G eng %9 phdthesis %0 Journal Article %J Ecosphere %D 2021 %T Connectivity: insights from the U.S. Long Term Ecological Research Network %A Iwaniec, David M. %A Gooseff, Michael %A Suding, Katharine N. %A Samuel Johnson, David %A Reed, Daniel C. %A Peters, Debra P. C. %A Adams, Byron %A Barrett, John E. %A Bestelmeyer, Brandon T. %A Castorani, Max C. N. %A Cook, Elizabeth M. %A Davidson, Melissa J. %A Groffman, Peter M. %A Hanan, Niall P. %A Huenneke, Laura F. %A Johnson, Pieter T. J. %A McKnight, Diane M. %A Miller, Robert J. %A Okin, Gregory S. %A Preston, Daniel L. %A Rassweiler, Andrew %A Ray, Chris %A Sala, Osvaldo E. %A Schooley, Robert L. %A Seastedt, Timothy %A Spasojevic, Marko J. %A Vivoni, Enrique R. %B Ecosphere %V 12 %8 may %G eng %U https://onlinelibrary.wiley.com/doi/10.1002/ecs2.3432 %R 10.1002/ecs2.3432 %0 Journal Article %J BioRxiv %D 2021 %T Diel light cycles affect phytoplankton competition in the global ocean %A Tsakalakis, I. %A Follows, J. %A Dutkiewicz, S. %A Follett, C.L %A Vallino, J.J. %K biogeography %K competition %K growth rates %K light cycles %K LTER-PIE %K nutrients %K phytoplankton %B BioRxiv %V 2021.05.19.444874 %G eng %9 preprint %R 10.1101/2021.05.19.444874 %0 Journal Article %J Limnology and Oceanography %D 2021 %T Spatial and temporal heterogeneity of methane ebullition in lowland headwater streams and the impact on sampling design %A Robison, Andrew L. %A Wollheim, Wilfred M. %A Turek, Bonnie %A Bova, Cynthia %A Snay, Carter %A Varner, Ruth K. %B Limnology and Oceanography %V 66 %P 4063–4076 %8 dec %G eng %U https://onlinelibrary.wiley.com/doi/10.1002/lno.11943 %R 10.1002/lno.11943 %0 Journal Article %J Nature Communications %D 2020 %T General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales %A Hautier, Yann %A Zhang, Pengfei %A Loreau, Michel %A Wilcox, Kevin R. %A Seabloom, Eric W. %A Borer, Elizabeth T. %A Byrnes, Jarrett E. K. %A Koerner, Sally E. %A Komatsu, Kimberly J. %A Lefcheck, Jonathan S. %A Hector, Andy %A Adler, Peter B. %A Alberti, Juan %A Arnillas, Carlos A. %A Bakker, Jonathan D. %A Brudvig, Lars A. %A Bugalho, Miguel N. %A Cadotte, Marc %A Caldeira, Maria C. %A Carroll, Oliver %A Crawley, Mick %A Collins, Scott L. %A Daleo, Pedro %A Dee, Laura E. %A Eisenhauer, Nico %A Eskelinen, Anu %A Fay, Philip A. %A Gilbert, Benjamin %A Hansar, Amandine %A Isbell, Forest %A Knops, Johannes M. H. %A MacDougall, Andrew S. %A McCulley, Rebecca L. %A Moore, Joslin L. %A Morgan, John W. %A Mori, Akira S. %A Peri, Pablo L. %A Pos, Edwin T. %A Power, Sally A. %A Price, Jodi N. %A Reich, Peter B. %A Risch, Anita C. %A Roscher, Christiane %A Sankaran, Mahesh %A Schütz, Martin %A Smith, Melinda %A Stevens, Carly %A Tognetti, Pedro M. %A Virtanen, Risto %A Wardle, Glenda M. %A Wilfahrt, Peter A. %A Wang, Shaopeng %X Abstract Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities. %B Nature Communications %V 11 %P 5375 %8 dec %G eng %U https://www.nature.com/articles/s41467-020-19252-4 %R 10.1038/s41467-020-19252-4 %0 Generic %D 2020 %T maxEntropyProd/MEP-AutoHetDet: Release of Fortran code associated with paper %A VAllini, J.J. %K heterotrophy %K maximum entropy production %K modelling %7 4.7 %I Zenodo %G eng %U https://zenodo.org/record/3979922#.YjHsEDUpBaQ %9 Software %R 10.5281/zenodo.3979922 %0 Generic %D 2020 %T maxEntropyProd/MEP-AutoHetDet: Release of Fortran code associated with paper %A Vallino, J.J. %K maximum entropy production, heterotrophy %K modelling %7 4.7 %I Zenodo %G eng %U https://github.com/maxEntropyProd/MEP-AutoHetDet %9 Software %R 10.5281/zenodo.3979922 %0 Generic %D 2020 %T maxEntropyProd/MEP-SidersPond: Release of Fortran code associated with published paper %A Vallino, J.J. %K biogeochemistry %K maximum entropy production %K microbes %K modelling %K pond %7 v1.5.9 %I Zenodo %G eng %U https://github.com/maxEntropyProd/MEP-SidersPond %9 Software %R 10.5281/zenodo.3978698 %0 Journal Article %J Limnology and Oceanography %D 2020 %T Metagenomics coupled with biogeochemical rates measurements provide evidence that nitrate addition stimulates respiration in salt marsh sediments %A Bulseco, Ashley N. %A Vineis, Joseph H. %A Murphy, Anna E. %A Spivak, Amanda C. %A Giblin, Anne E. %A Tucker, Jane %A Bowen, Jennifer L. %B Limnology and Oceanography %V 65 %8 jan %G eng %U https://onlinelibrary.wiley.com/doi/10.1002/lno.11326 %R 10.1002/lno.11326 %0 Journal Article %J Entropy %D 2020 %T Phytoplankton Temporal Strategies Increase Entropy Production in a Marine Food Web Model %A Vallino, Joseph J. %A Tsakalakis, Ioannis %X We develop a trait-based model founded on the hypothesis that biological systems evolve and organize to maximize entropy production by dissipating chemical and electromagnetic free energy over longer time scales than abiotic processes by implementing temporal strategies. A marine food web consisting of phytoplankton, bacteria, and consumer functional groups is used to explore how temporal strategies, or the lack thereof, change entropy production in a shallow pond that receives a continuous flow of reduced organic carbon plus inorganic nitrogen and illumination from solar radiation with diel and seasonal dynamics. Results show that a temporal strategy that employs an explicit circadian clock produces more entropy than a passive strategy that uses internal carbon storage or a balanced growth strategy that requires phytoplankton to grow with fixed stoichiometry. When the community is forced to operate at high specific growth rates near 2 d−1, the optimization-guided model selects for phytoplankton ecotypes that exhibit complementary for winter versus summer environmental conditions to increase entropy production. We also present a new type of trait-based modeling where trait values are determined by maximizing entropy production rather than by random selection. %B Entropy %V 22 %P 1249 %8 nov %G eng %U https://www.mdpi.com/1099-4300/22/11/1249 %R 10.3390/e22111249 %0 Journal Article %J Global Biogeochemical Cycles %D 2020 %T Tidal Wetland Gross Primary Production Across the Continental United States, 2000–2019. %A Feagin, A. %A Forbrich, I. %A Huff, T.P. %A Barr, J. G. %A Ruiz-Plancarte, J. %A Fuentes, J. D. %A NaJJar, R. G. %A Vargas, R. %A Vázquez‐Lule, A. %A Windham‐Myers. L. %A Kroeger, K. D. %A Ward, E. J. %A Moore, G. W. %A Leclerc, M. %A Krauss, K. W. %A Stagg, C. L. %A Alber, M. %A Knox, S. H. %A Schäfer, K.V.R. %A Bianchi, T. S. %A Hutchings, J. A. %A Nahrawi, H. %A Noormets, A. %A Mitra, B. %A Jaimes, A. %A Hinson, A. L. %A Bergamaschi, B. %A King, J. S. %A Miao, G. %K blue carbon %K eddy covariance %K LTER-PIE %K organic matter %K primary production %K tidal wetlands %B Global Biogeochemical Cycles %V 34 %G eng %M PIE488 %] NSF-LTER-PIE %R 10.1029/2019GB006349 %F Journal Article %0 Journal Article %J ISME %D 2019 %T Fluid geochemistry, local hydrology, and metabolic activity define methanogen community size and composition in deep-sea hydrothermal vents %A Stewart, L.C. %A Algar, C.K. %A Fortunato, C.S. %A Larson, B.I. %A Vallino, J.J. %A Huber, J.A. %A Butterfield, D.A. %A Holden, J.F. %K flow path geometry %K LTER-PIE %K methanogens %K microbial communities %K population dynamics %B ISME %G eng %M PIE472 %3 OCE-1238212 and many others %] NSF-LTER-PIE %R 10.1038/s41396-019-0382-3 %F Journal Article %0 Journal Article %J Ecological Indicators %D 2019 %T Intensity Analysis and the Figure of Merit’s components for assessment of a Cellular Automata – Markov simulation model %A Varga, O.G. %A Pontius, R.G., Jr. %A Singh, S.K. %A Szabo, S. %K CA-Markov %K cellular-automata %K figure of merit %K intensity analysis %K land change %K LTER-PIE %K Validation %B Ecological Indicators %G eng %M PIE465 %3 OCE-1637630; EFOP-3.6.1-16-20`6-00022; TNN 123457 %] NSF-LTER-PIE %R 10.1016/j.ecolind.2019.01.057 %F Journal Article %0 Journal Article %J Limnology and Oceanography %D 2019 %T Metagenomics coupled with biogeochemical rates measurements provide evidence that nitrate addition stimulates respiration in salt marsh sediments. %A Bulseco, A.N. %A Vineis, J.H. %A Murphy, A.E. %A Spivak, A.C. %A Giblin, A.E. %A Tucker, J. %A Bowen, J.L. %K denitrification %K dissolved inorganic carbon %K flow through reactor %K inorganic nutrients %K LTER-PIE %K nitrate addition %K population dynamics %K salt marsh %K shotgun metagenomics %B Limnology and Oceanography %V 65 %G eng %M PIE484 %3 Ford Foundation; NOAA Grant Number: 3004701234; NSF Grants DBI1722553; DEB0213767; DEB1350491; DEB1354494; DEB1655552; DEB1701748; OCE0423565; OCE0923689; OCE0924287; OCE1058747; OCE1353140; OCE1637630; Woods Hole Sea Grant, WHOI Grant Numbers: NA140AR4170074; NA18OAR4170104   %] NSF-LTER-PIE %R 10.1002/lno.11326 %F Journal Article %0 Journal Article %J Ecology %D 2019 %T Supporting \textitSpartina} : Interdisciplinary perspective shows \textitSpartina} as a distinct solid genus %A Bortolus, Alejandro %A Adam, Paul %A Adams, Janine B. %A Ainouche, Malika L. %A Ayres, Debra %A Bertness, Mark D. %A Bouma, Tjeerd J. %A Bruno, John F. %A Caçador, Isabel %A Carlton, James T. %A Castillo, Jesus M. %A Costa, Cesar S. B. %A Davy, Anthony J. %A Deegan, Linda %A Duarte, Bernardo %A Figueroa, Enrique %A Gerwein, Joel %A Gray, Alan J. %A Grosholz, Edwin D. %A Hacker, Sally D. %A Hughes, A. Randall %A Mateos‐Naranjo, Enrique %A Mendelssohn, Irving A. %A Morris, James T. %A Muñoz‐Rodríguez, Adolfo F. %A Nieva, Francisco J. J. %A Levin, Lisa A. %A Li, Bo %A Liu, Wenwen %A Pennings, Steven C. %A Pickart, Andrea %A Redondo‐Gómez, Susana %A Richardson, David M. %A Salmon, Armel %A Schwindt, Evangelina %A Silliman, Brian R. %A Sotka, Erik E. %A Stace, Clive %A Sytsma, Mark %A Temmerman, Stijn %A Turner, R. Eugene %A Valiela, Ivan %A Weinstein, Michael P. %A Weis, Judith S. %B Ecology %V 100 %G eng %U https://onlinelibrary.wiley.com/doi/10.1002/ecy.2863 %R 10.1002/ecy.2863 %0 Journal Article %J Biogeochemistry %D 2018 %T River network saturation concept: factors influencing the balance of biogeochemical supply and demand of river networks %A Wollheim, W.M. %A Bernal, S. %A Burns, D.A. %A Czuba, J.A. %A Driscoll, C.T. %A Hansen, A.T. %A Hensley, R.T. %A Hosen, J.D. %A Inamdar, S. %A Kaushal, S.S. %A Koenig, L.E. %A Lu, Y.H. %A Marzadri, A. %A Raymond, P.A. %A Scott, D. %A Stewart, R.J. %A Vidon, P.G. %A Wohl, E. %K demand %K dissolved %K flow regime %K fluxes %K gases %K inorganic nitrogen %K LTER-PIE %K macrosystems %K modeling %K removal %K retention %K river network %K saturation %K sediment %K sensors %K supply %B Biogeochemistry %G eng %M PIE480 %3 OCE-1238212, OCE-1637630 and many others %] NSF-LTER-PIE %R 10.1007/s10533-018-0488-0 %F Journal Article %0 Journal Article %J Frontiers in Environmental Science %D 2018 %T Using Maximum Entropy Production to Describe Microbial Biogeochemistry Over Time and Space in a Meromictic Pond %A Vallino, J.J. %A Huber, J.A. %K community function %K inorganic nitrogen %K LTER-PIE %K maximum entropy production %K meromictic %K metabolic net works %K microbial biogepchemustry %K phototrophy %B Frontiers in Environmental Science %G eng %M PIE473 %3 OCE-1637630 and many others %] NSF-LTER-PIE %R 10.3389/fenvs.2018.00100 %F Journal Article %0 Journal Article %J Estuarine, Coastal and Shelf Science %D 2017 %T The effect of evaporation on the erodibility of mudflats in a mesotidal estuary %A Fagherazzi, S. %A Viggato, T. %A Vieillard, A.M. %A Mariotti, G. %A Fulweiler, R.W. %K disturbance %K erosion %K estuaries %K LTER-PIE %K mudflats %K tidal energy %B Estuarine, Coastal and Shelf Science %V 194 %P 118-127 %G eng %M PIE435 %3 OCE-0924287, DEB-1237733, OCE-1637630 %] NSF-LTER-PIE %R 10.1016/j.ecss.2017.06.011 %F Journal Article %0 Journal Article %J Annual Review of Marine Science %D 2016 %T Thermodynamics of Marine Biogeochemical Cycles: Lotka Revisited %A Vallino, J.J. %A Algar, C.K. %K biogeochemistry %K entropy %K LTER-PIE %K maximum entropy production %K MEP %B Annual Review of Marine Science %V 8 %P 333-356 %G eng %M PIE402 %3 OCE-1238212, EF-0928742 %] NSF-LTER-PIE %R 10.1146/annurev-marine-010814-015843 %F Journal Article %0 Journal Article %J Ecosystems %D 2015 %T Ecosystem's 80th and the Reemergence of Emergence %A Rastetter, E. %A Vallino, J. %K ecosystem %K emergence %K LTER-PIE %B Ecosystems %V 18 %P 735-739 %G eng %M PIE401 %] NSF-LTER-PIE %R 10.1007/s10021-015-9893-6 %F Journal Article %0 Journal Article %J Marine Ecological Progress Series %D 2015 %T Ulva additions alter soil biogeochemistry and negatively impact Spartina alterniflora growth %A Watson, E.B. %A Wigand, C. %A Oczkowski, A.J. %A Sundberg, K. %A Vendettuoli, D. %A Jayaraman, S. %A Saliba, K. %A Morris, J.T. %K allelochemicals %K allelopathy %K disturbance %K eutrophic estuary %K LTER-PIE %K primary production %K salt marsh %K salt marsh loss %B Marine Ecological Progress Series %V 532 %P 59-72 %G eng %M PIE395 %] NSF-LTER-PIE %R 10.3354/meps11334 %F Journal Article %0 Journal Article %J Ocean Dynamics %D 2015 %T Time-dependent behavior of a placed bed of cohesive sediment subjected to erosion and deposition cycles %A Mariotti, G. %A Valentine, K. %A Fagherazzi, S. %K cycles %K disturbance %K erodibility %K flocculation %K long-term %K LTER-PIE %K mud %B Ocean Dynamics %V 65 %P 287-294 %G eng %M PIE382 %] NSF-LTER-PIE %R 10.1007/s10236-014-0798-2 %F Journal Article %0 Journal Article %J Ecosystems %D 2014 %T Animating the Carbon Cycle %A Schmitz, O.J. %A Raymond, P. A. %A Estes, J.A. %A Kurz, W.A. %A Holtgrieve, G.W. %A Ritchie, M.E. %A Schindler, D.E. %A Spivak, A.C. %A Wilson, R.W. %A Bradford, M.A. %A Christensen, V. %A Deegan, L. %A Smetacek, V. %A Vanni, M.J. %A Wilmers, C.C. %K animal management %K animal mediation %K biogeochemical cycling %K carbon budgets %K carbon cycling %K LTER-PIE %K organic matter %K population dynamics %B Ecosystems %V 17 %P 344-359 %G eng %M PIE368 %] NSF-LTER-PIE %R 10.1007/s10021-013-9715-7 %F Journal Article %0 Journal Article %J Aquatic Microbial Ecology %D 2014 %T Predicting microbial nitrate reduction pathways in coastal sediments %A Algar, C.K. %A Vallino, J.J. %K coastal sediments %K estuaries %K inorganic nutrients %K LTER-PIE %K microbes %K nitrate reduction %B Aquatic Microbial Ecology %V 71 %P 223-238 %G eng %M PIE345 %] NSF-LTER-PIE %R 10.3354/ame01678 %F Journal Article %0 Journal Article %J Advances in Geosciences %D 2014 %T Repeated erosion of cohesive sediments with biofilms %A Valentine, K. %A Mariotti, G. %A Fagherazzi, S. %K biofilms %K disturbance %K LTER-PIE %K sediment erosion, tidal flat %B Advances in Geosciences %V 39 %P 9-14 %G eng %M PIE365 %] NSF-LTER-PIE %R 10.5194/adgeo-39-9-2014 %F Journal Article %0 Journal Article %J Geomorphology %D 2014 %T Saltmarsh pool and tidal creek morphodynamics: Dynamic equilibrium of northern latitude saltmarshes? %A Wilson, C.A. %A Hughes, Z.J. %A FitzGerald, D.M. %A Hopkinson, C.S. %A Valentine, V. %A Kolker, A.S. %K anthropogenic alteration %K disturbance %K LTER-PIE %K saltmarsh ditches %K saltmarsh pools %K sea-level %K tidal creeks %K vertical accretion %B Geomorphology %P 99-115 %G eng %M PIE369 %] NSF-LTER-PIE %R 10.1016/j.geomorph.2014.01.002 %F Journal Article %0 Book Section %B Beyond the Second Law: Entropy Production and Non-Equilibrium Systems %D 2014 %T Use of receding horizon optimal control to solve MaxEP-based biogeochemistry problems %A Vallino, J.J. %A Algar, C.K. %A Fernandez Gonzales, N. %A Huber, J.A. %E Dewar, R.C. %E Lineweaver, C.H. %E Niven, R.K. %E Regenauer-Lieb, K. %K complex systems %K complexity %K disturbance %K entropy production %K inorganic nutrients %K LTER-PIE %K non-equilibrium systems %K organic matter %K population dynamics %B Beyond the Second Law: Entropy Production and Non-Equilibrium Systems %I Springer %P 337-359 %G eng %M PIE327 %] NSF-LTER-PIE %R 10.1007/978-3-642-40154-1_18. %F Book Section %0 Thesis %D 2013 %T The Effect of Physical and Biological Processes on the erosion of Cohesive Sediments %A Valentine, K. %K disturbance %K erosion %K LTER-PIE %K salt marsh %K sediments %I Boston University %C Boston, MA %V B.S. %G eng %9 bachelorsthesis %M PIE400 %] NSF-LTER-PIE %F B.S. Thesis %0 Journal Article %J Global Biogeochemical Cycles %D 2013 %T History of nutrient inputs to the Northeastern United States, 1930-2000. %A Hale, R.L. %A Hoover, J.H. %A Wollheim, W.M. %A Vorosmarty, C.J. %K anthropogenic %K disturbance %K inorganic nutrients %K LTER-PIE %K Northeast United States %K nutrient inputs %B Global Biogeochemical Cycles %V 27 %P 578-591 %G eng %M PIE315 %] NSF-LTER-PIE %R 10.1002/gbc.20049 %F Journal Article %0 Book Section %B Recarbonization of the Bioshpere: Ecosystem and Global Carbon Cycle. %D 2012 %T Assessment of Carbon Sequestration Potential in Coastal Wetlands. %A Morris, J.T. %A Edwards, J. %A Crooks, S. %A Reyes, E. %E Lal, R. %E Lorenz, K. %E Hüttl, R. %E Schneider, B.U. %E von Braun, J. %K anthropogenic disturbance %K autochthonous %K carbon sequestration %K carbon stocks %K coastal ecosystems %K coastal wetlands %K digital elevation model %K diking %K disturbance %K drainage %K holocene %K LTER-PIE %K mangroves %K marsh equilibrium model %K organic matter %K organic rich soil %K primary production %K sea level rise %K subsidence %K suspended solids %K tidal amplitude %K tidal marshes %K tide range %B Recarbonization of the Bioshpere: Ecosystem and Global Carbon Cycle. %I Springer %P 517-531 %G eng %M PIE303 %] NSF-LTER-PIE %R 10.1007/978-94-007-4159-1_24 %F Book Section %0 Journal Article %J Marine Ecological Progress Series %D 2012 %T Impacts of long-term fertilization on salt marsh tidal creek benthic nutrient and N2 gas fluxes %A Vieillard, A.M. %A Fulweiler, R.W. %K denitrification %K DNRA %K fertilization %K inorganic nutrients %K LTER-PIE %K nitrogen loading %K salt marsh ecosystem %B Marine Ecological Progress Series %V 471 %P 11-22 %G eng %M PIE323 %] NSF-LTER-PIE %R 10.3354/meps10013 %F Journal Article %0 Journal Article %J Bioscience %D 2012 %T Legacy effects material flux: structural catchment changes predate long-term studies. %A Bain, D. %A Green, M.B. %A Campbell, J. %A Chamblee, J. %A Fraterrigo, J. %A Kaushal, S.S. %A Martin, S. %A Jordan, T. %A Parolari, A. %A Sobczak, W.V. %A Weller, D.E. %A Wollheim, W.M. %A Boose, E. %A Duncan, J. %A Gettel, G. %A Hall, B. %A Kumar, P. %A Thompson, J. %A Vose, J. %A Elliott, E. %A Leigh, D. %K inorganic nutrients %K legacy effect %K long-term studies %K LTER-PIE %K sedimentation %K streams %K structural and signal legacy effects %B Bioscience %V 62 %P 575-584 %G eng %M PIE299 %] NSF-LTER-PIE %R 10.1525/bio.2012.62.6.8 %F Journal Article %0 Journal Article %J BioScience %D 2012 %T Local scale carbon budgets and mitigation opportunities for the Northeastern United States. %A Raciti, S. %A Fahey, T. %A Hall, B. %A Driscoll, C. %A Carranti, F.J. %A Foster, D. %A Gwyther, P.S. %A Jenkins, J. %A Hamburg, S. %A Neill, C. %A Ollinger, S. %A Peery, B.W. %A Quigley, E. %A Sherman, R. %A Thomas, R.Q. %A Vadeboncoeur, T.M. %A Weinstein, D. %A Wilson, G. %A Woodbury, P. %A Yandik, W. %K carbon %K climate change %K disturbance %K energy %K land use %K LTER-PIE %B BioScience %V 62 %P 23-38 %G eng %M PIE298 %] NSF-LTER-PIE %R 10.1525/bio.2012.62.1.7 %F Journal Article %0 Journal Article %J Earth System Dynamics %D 2011 %T Differences and implications in biogeochemistry from maximizing entropy production locally versus globally %A Vallino, J.J. %K dissipative systems %K disturbance %K evolution %K free energy %K information %K inorganic nutrients %K living systems %K LTER-PIE %K organic matter %K population dynamics %K self-organization %B Earth System Dynamics %V 2 %P 69-85 %G eng %M PIE285 %] NSF-LTER-PIE %R 10.5194/esd-2-69-2011 %F Journal Article %0 Journal Article %J Estuarine, Coastal and Shelf Science %D 2011 %T The ebb and flood of silica: Quantifying dissolved and biogenic silica fluxes from a temperate salt marsh %A Vieillard, A., %A R.W. Fulweiler, R.W. %A Hughes, Z. %A Carey, J. %K biogenic silica %K diatoms %K dissolved silica %K inorganic nutrients %K LTER-PIE %K nutrient cycles %K primary production %K salt marshes %B Estuarine, Coastal and Shelf Science %V 95 %P 415-423 %G eng %M PIE283 %] NSF-LTER-PIE %R 10.1016/j.ecss.2011.10.012 %F Journal Article %0 Journal Article %J Environmental Microbiology %D 2011 %T Metapopulation structure of Vibrionaceae among coastal marine invertebrates %A Preheim, S.P. %A Boucher, Y. %A Woldschutte, H. %A David, L.A. %A Veneziano, D. %A Alm, E.J. %A Polz, M.F. %K genome %K LTER-PIE %K marine invertebrates %K microbes %K population dynamics %K vibrios %B Environmental Microbiology %V 13 %P 265-275 %G eng %M PIE286 %] NSF-LTER-PIE %R 10.1111/j.1462-2920.2010.02328.x %F Journal Article %0 Journal Article %J The ISME Journal %D 2011 %T Microbial community composition in salt marsh sediments resists perturbation by nutrient enrichment %A Bowen, J.L. %A Ward, B.B. %A Morrison, H.G. %A Hobbie, J.E. %A Valiela, I. %A Deegan, L.A. %A Sogin, M.L. %K denitrification %K disturbance %K estuaries %K eutrophication %K inorganic nitrogen %K LTER-PIE %K microbes %K nirS %K population dynamics %K resistance %K salt marsh %B The ISME Journal %V 5 %P 1540-1548 %G eng %M PIE267 %] NSF-LTER-PIE %R 10.1038/ismej.2011.22 %F Journal Article %0 Journal Article %J Proceedings of the National Academy of Science %D 2011 %T Nitrous oxide emission from denitrification in stream and river networks %A Beaulieu, J. J. %A Tank, J.L. %A Hamilton, S. K. %A Wollheim, W. %A Hall, R. %A Mulholland, P. %A Peterson, B. %A Ashkenas, L. %A Cooper, L. %A Dahm, C. %A Dodds, W. %A Grimm, N. %A Johnson, S. %A McDowell, W. %A Poole, G. %A Valett, H. %A Arango, C. %A Bernot, M. %A Burgin, A. %A Crenshaw, C. %A Helton, A. %A Johnson, L. %A O'Brien, J. %A Potter, J. %A Sheibley, D. %A Sobota, D. %A Thomas, S. %K inorganic nitrogen %K LTER-PIE %K nitrous oxide %K streams %B Proceedings of the National Academy of Science %V 108 %P 214-219 %G eng %M PIE266 %] NSF-LTER-PIE %R 210.1073/pnas.1011464108 %F Journal Article %0 Journal Article %J Frontiers in Ecology and Environment %D 2011 %T Thinking outside the channel: Modeling nitrogen cycling in networked river ecosystems %A Helton, A.M. %A Poole, G.C. %A Meyer, J.L. %A Wollheim, W.M. %A Peterson, B.J. %A Mulholland, P.J. %A Bernhardt, E.S. %A Stanford, J.A. %A Arango, C. %A Ashkenas, L.R. %A Cooper, L.W. %A Dodds, W.K. %A Gregory, S.V. %A Hall, R.O. %A Hamilton, S.K. %A Johnson, S.L. %A McDowell, W.H. %A Potter, J.D. %A Tank, J.L. %A Thomas, S.M. %A Valett, H.M. %A Webster, J.R. %A Zeglin, L. %K inorganic nitrogen %K LTER-PIE %K nitrogen cycling modeling %K rivers %B Frontiers in Ecology and Environment %V 9 %P 229-238 %G eng %M PIE272 %] NSF-LTER-PIE %R 10.1890/080211 %F Journal Article %0 Thesis %B Urban and Environmental Planning %D 2010 %T Drivers of Residential Lawn Care in Suburban Massachusetts: A Quantitative and Qualitative Analysis of Four Massachusetts Towns %A von Trapp, K. %K disturbance %K land use %K lawns %K LTER-PIE %K primary production %K suburbia %B Urban and Environmental Planning %I Tufts University %C Medford %G eng %9 mastersthesis %M PIE291 %] NSF-LTER-PIE %F M.S. Thesis %0 Journal Article %J Philosophical Transactions of The Royal Society B %D 2010 %T Ecosystem biogeochemistry considered as a distributed metabolic network ordered by maximum entropy production. %A Vallino, J.J. %K disturbance %K entropy %K inorganic nutrients %K LTER-PIE %K metabolism %K organic matter %K population dynamics %B Philosophical Transactions of The Royal Society B %V 365 %P 1417-1427 %G eng %M PIE227 %] NSF-LTER-PIE %R 10.1098/rstb.2009.0272 %F Journal Article %0 Journal Article %J Journal of Coastal Research %D 2010 %T Salt marsh geomorphological analyses via integration of multi-temporal multispectral remote sensing with LIDAR and GIS. %A Millette, T.L. %A Argow, B. %A Marcano, E. %A Hayward, C. %A Hopkinson, C. %A Valentine, V. %K disturbance %K ecogeomorphology %K geomophology %K geoprocessing %K GIS %K LiDAR %K LTER-PIE %K New England %K organic matter %K remote sensing %K salt marsh %B Journal of Coastal Research %V 26 %P 809-816 %G eng %M PIE257 %] NSF-LTER-PIE %R 10.2112/JCOASTRES-D-09-00101.1 %F Journal Article %0 Journal Article %J Journal of Geophysical Research %D 2010 %T Wetland-estuarine-shelf interactions in the Plum Island Sound and Merrimack River in the Massachusetts coast %A Zhao, L. %A Chen, C. %A Vallino, J. %A Hopkinson, C. %A Beardsley, R.C. %A Lin, H. %A Lerczak, J. %K disturbance %K estuaries %K hydrodynamics %K LTER-PIE %B Journal of Geophysical Research %V 115 %P 1-13 %G eng %M PIE264 %] NSF-LTER-PIE %R 10.1029/2009JC006085 %F Journal Article %0 Journal Article %J Journal of the North American Benthological Society %D 2009 %T The biogeochemical influences of nitrate, dissolved oxygen, and dissolved organic carbon on stream nitrate uptake. %A Thouin, J.A. %A Wollheim, W.M. %A Vorosmarty, C.J. %A Jacobs, J. %A McDowell, W.H. %K dissolved organic carbon %K dissolved oxygen %K inorganic nutrients %K LTER-PIE %K net nutrient uptake %K nitrate %K nitrate uptake %K organic matter %K priming effect %K solute addition %B Journal of the North American Benthological Society %V 28 %P 894-907 %G eng %M PIE176 %] NSF-LTER-PIE %R 10.1899/08-183.1 %F Journal Article %0 Journal Article %J International Journal of Metadata, Semantics and Ontologies %D 2009 %T The Long-Term Ecological Research community metadata standardisation project: a progress report. %A San Gil, I. %A Baker, K. %A Campbell, J. %A Denny, E.G. %A Vanderbilt, K. %A Riordan, B. %A Koskela, R. %A Downing, J. %A Grabner, S. %A Melendez, E. %A Walsh, J.M. %A Kortz, M. %A Conners, J. %A Yarmey, L. %A Kaplan, N. %A Boose, E.R. %A Powell, L. %A Gries, C. %A Schroeder, R. %A Ackerman, T. %A Ramsey, K. %A Benson, B. %A Chipman, J. %A Laundre, J. %A Garritt, H. %A Henshaw, D. %A Collins, B. %A Gardner, C. %A Bohm, S. %A O'Brien, M. %A Gao, J. %A Sheldon, W. %A Lyon, S. %A Bahauddin, D. %A Servilla, M. %A Costa, D. %A Brunt, J. %K ecological metadata language %K EML %K LTER-IMC %K LTER-PIE %K metadata %K metadata management %K standardisation %B International Journal of Metadata, Semantics and Ontologies %V 4 %P 141-153 %G eng %M PIE235 %] NSF-LTER-PIE %R 10.1504/IJMSO.2009.027750 %F Journal Article %0 Journal Article %J Journal of Geophysical Research-Biogeosciences %D 2008 %T Dynamics of N removal over annual time scales in a suburban river network %A Wollheim, W.M. %A Peterson, B.J. %A Vorosmarty, C. %A Hopkinson, C. %A Thomas, S.A. %K disturbance %K inorganic nutrients %K LTER-PIE %K nitrogen removal %K watershed %B Journal of Geophysical Research-Biogeosciences %V 113 %G eng %M PIE184 %] NSF-LTER-PIE %R 10.1029/2007JG000660 %F Journal Article %0 Journal Article %J Global Biogeochemical Cycles %D 2008 %T Global N removal by freshwater aquatic systems A spatially distributed, within-basin approach %A Wollheim, W.M. %A Vorosmarty, C.J. %A Bouwman, A.F. %A Green, P.A. %A Harrison, J. %A Linder, E. %A Peterson, B.J. %A Green, P.A. %A Seitzinger, S. %A Syvitski, J.P.M. %K disturbance %K inorganic nitrogen %K LTER-PIE %K nitrogen removal %K watershed %B Global Biogeochemical Cycles %V 22 %G eng %M PIE180 %] NSF-LTER-PIE %R 10.1029/2007GB002963 %F Journal Article %0 Journal Article %J Nature %D 2008 %T Stream denitrification across biomes and its response to anthropogenic nitrate loading %A Mulholland, P. J. %A Helton, A. M. %A Poole, G.C. %A Hall, Jr., R.O. %A Hamilton, S. K. %A Peterson, B. J. %A Tank, J.L. %A Ashkenas, L.R. %A Cooper, L. W. %A Dahm, C. N. %A Dodds, W. K. %A Findlay, S. E. G. %A Gregory, S. V. %A Grimm, N.B. %A Johnson, S. L. %A McDowell, W.H. %A Meyer, J. L. %A Valett, H. M. %A Webster, J. R. %A Arango, C. P. %A Beaulieu, J. J. %A Bernot, M. J. %A Burgin, A. J. %A Crenshaw, C. L. %A Johnson, L.T. %A Niederlehner, B. R. %A OメBrien, J. M. %A Potter, J. D. %A Sheibley, R.W. %A Sobota, D. J. %A Thomas, S. M. %K denitrification %K disturbance %K inorganic nutrients %K LTER-PIE %K nitrogen %K nitrogen isotopes %K stream network %B Nature %V 452 %P 202-206 %G eng %M PIE190 %] NSF-LTER-PIE %R 10.1038/nature06686 %F Journal Article %0 Journal Article %J Frontiers in Ecology and Environment %D 2008 %T Understanding and forecasting the effects of sea level rise and intense windstorms on coastal and upland ecosystems: the need for a continental-scale netowrk of observatories %A Hopkinson, C.S. %A Lugo, A.E. %A Alber, M. %A Covich, A. %A van Bloem, S. %K climate change %K disturbance %K ecosystem services %K land use %K LTER-PIE %K population dynamics %K sea-level %B Frontiers in Ecology and Environment %V 6 %P 255-263 %G eng %M PIE179 %] NSF-LTER-PIE %R 10.1890/070153 %F Journal Article %0 Journal Article %J Hydrological Processes %D 2007 %T The application of electrical conductivity as a tracer for hydrograph separation in urban catchments. %A Pellerin, B.A. %A Wollheim, W.M. %A Feng, X. %A Vorosmarty, C.J. %K disturbance %K electrical conductivity %K hydrograph separation %K impervious %K LTER-PIE %K urbanization %B Hydrological Processes %V 22 %P 1810-1818 %G eng %M PIE168 %] NSF-LTER-PIE %R 10.1002/hyp.6786 %F Journal Article %0 Journal Article %J Ecological Applications %D 2007 %T Susceptibility of salt marshes to nutrient enrichment and predator removal %A Deegan, L.A. %A Bowen, J.L. %A Drake, D.C. %A Fleeger, J.W. %A Friedrichs, C.T. %A Galván, K.A. %A Hobbie, J.E. %A Hopkinson, C. %A Johnson, D.S. %A Johnson, J.M. %A Lemay, L.E. %A Miller, E.E. %A Peterson, B.J. %A Picard, C. %A Sheldon, S. %A Sutherland, M. %A Vallino, J. %A Warren, R.S. %K bottom-up %K disturbance %K eutrophication %K Fundulus heteroclitus %K inorganic nutrients %K LTER-PIE %K multiple stressors %K nutrient loading %K organic matter %K population dynamics %K primary production %K salt marsh %K Spartina alterniflora %K Spartina patens %K species change %K top-down control %B Ecological Applications %V 17 %P S-42-S63 %G eng %M PIE236 %] NSF-LTER-PIE %R 10.1890/06-0452.1 %F Journal Article %0 Journal Article %J Water Resources Research %D 2006 %T Effect of historical changes in land use and climate on the water budget of an urbanizing watershed %A Claessens, L. %A Hopkinson, C. %A Rastetter, E. %A Vallino, J. %K climate change %K disturbance %K hydrology %K land use %K LTER-PIE %K population dynamics %K watershed %B Water Resources Research %V 42 %G eng %M PIE232 %] NSF-LTER-PIE %R 10.1029/2005WR004131 %F Journal Article %0 Journal Article %J Geophysical Research Letters %D 2006 %T Relationship between river size and nutrient removal. %A Wollheim, W.M. %A Vorosmarty, C.J. %A Peterson, B.J. %A Seitzinger, S.P. %A Hopkinson, C.S. %K hydrology %K inorganic nutrients %K LTER-PIE %K nutrient removal %B Geophysical Research Letters %V 33 %G eng %M PIE165 %] NSF-LTER-PIE %R 10.1029/2006GL025845 %F Journal Article %0 Journal Article %J Biogeochemistry %D 2006 %T The role of snowmelt and spring rainfall in inorganic nutrient fluxes from a large temperate watershed, the Androscoggin River basin (Maine and New Hampshire). %A Oczkowski, A.J. %A Pellerin, B.A. %A Hunt, C.W. %A Wollheim, W.M. %A Vorosmarty, C.J. %A Loder, T.C. %K Androscoggin River %K DIN %K Freshet %K LTER-PIE %K nitrogen %K nutrient %K Snowmelt %K Snowpack %K watershed %B Biogeochemistry %V 80 %P 217-234 %G eng %M PIE162 %] NSF-LTER-PIE %R 10.1007/s10533-006-9017-7 %F Journal Article %0 Journal Article %J Estuarine, Coastal and Shelf Science %D 2006 %T Salt marsh geomorphology: Physical and ecological effects on landform %A Torres, R. %A Fagherazzi, S. %A van Proosdij, D. %A Hopkinson, C. %K disturbance %K geomorphology %K LTER-PIE %K salt marsh %B Estuarine, Coastal and Shelf Science %V 69 %P 309-310 %G eng %M PIE171 %] NSF-LTER-PIE %R 10.1016/j.ecss.2006.05.001 %F Journal Article %0 Journal Article %J Landscape Ecology %D 2006 %T Visualizing certainty of extrapolations from models of land change. %A Pontius, R.G., Jr. %A Versluis, A.J. %A Malizia, N.R. %K accuracy %K calibration %K disturbance %K error %K land cover %K LTER-PIE %K map %K Massachusetts %K prediction %K uncertainty %K Validation %B Landscape Ecology %V 21 %P 1151-1166 %G eng %M PIE163 %] NSF-LTER-PIE %R 10.1007/s10980-006-7285-1 %F Journal Article %0 Conference Proceedings %B UNESCO Proceeding Series on Lagoons and Coastal Wetlands in the Global Change Context: Impact and Management Issues %D 2005 %T Effects of changes in sea level and productivity on the stability of intertidal marshes. %A Morris, J.T. %E Lasserre, P. %E Viaroli, P. %E Campostrini P. %K LTER-PIE %K productivity %K salt marsh %K sea level %K wetlands %B UNESCO Proceeding Series on Lagoons and Coastal Wetlands in the Global Change Context: Impact and Management Issues %C Venice %P 121-127 %8 April 26-28, 2004 %G eng %M PIE151 %] NSF-LTER-PIE %F Other %0 Journal Article %J Nature %D 2005 %T Efficient export of carbon to the deep ocean through dissolved organic matter. %A Hopkinson, C.S. %A Vallino, J. %K carbon, dissolved organic matter, marine %K LTER-PIE %B Nature %V 433 %P 142-145 %G eng %M PIE141 %] NSF-LTER-PIE %R 10.1038/nature03191 %F Journal Article %0 Journal Article %J Ecological Modeling %D 2005 %T Estimating estuarine gross production, community respiration and net ecosystem production: A nonlinear inverse technique. %A Vallino, J. %A Hopkinson, C.S. %A Garritt, R.H. %K community respiration %K dissolved oxygen %K estuarine metabolism %K gross primary production %K inverse modeling %K LTER %K LTER-PIE %K primary production %B Ecological Modeling %V 187 %P 281-296 %G eng %M PIE154 %] NSF-LTER-PIE %R 10.1016/j.ecolmodel.2004.10.018 %F Journal Article %0 Journal Article %J Compte Rendus %D 2005 %T Fluvial filtering of land to ocean fluxes: from Holocene variations to Anthrocene. %A Meybeck, M. %A Vorosmarty, C.J. %K fluvial %K inorganic nutrients %K land to ocean flux %K LTER-PIE %K watershed %B Compte Rendus %V 337 %P 107-123 %G eng %M PIE142 %] NSF-LTER-PIE %R 10.1016/j.crte.2004.09.016 %F Journal Article %0 Journal Article %J Ecological Modeling %D 2005 %T An inverse ecosystem model of year-to-year variations with first order approximation to the annual mean fluxes. %A Wan, Z. %A Vallino, J. %K Ecosystem modeling %K First order approximation %K Flux analysis %K Inverse model %K LTER-PIE %K Time scale separation %B Ecological Modeling %V 187 %P 369-388 %G eng %M PIE155 %] NSF-LTER-PIE %R 10.1016/j.ecolmodel.2005.02.003 %F Journal Article %0 Journal Article %J Ecosystems %D 2005 %T N retention in urbanizing headwater catchments %A Wollheim, W. %A Pellerin, B. %A Vorosmarty, C. %A Hopkinson, C. %K export %K impervious %K inorganic nutrients %K loading %K LTER-PIE %K nitrogen %K residential %K retention %K urban %K watershed %B Ecosystems %V 8 %P 871-884 %G eng %M PIE156 %] NSF-LTER-PIE %R 10.1007/s10021-005-0178-3 %F Journal Article %0 Journal Article %J Water, Air, and Soil Pollution %D 2005 %T Relationships of land use and streamwater solute concentrations in the Ipswich River basin, northeastern Massachusetts. %A Williams, M. %A Hopkinson, C. %A Rastetter, E. %A Vallino, J. %A Claussens, L. %K land cover %K land use %K LTER-PIE %K solute concentration %K urbanization %K watershed %B Water, Air, and Soil Pollution %V 161 %G eng %M PIE146 %] NSF-LTER-PIE %R 10.1007/s11270-005-2830-0 %F Journal Article %0 Conference Paper %B Conference proceedings of the meeting of Geocomputation %D 2005 %T Visualizing the certainty for extrapolations from models of landscape change %A Pontius, R.G., Jr. %A Versluis, A.J. %A Malizia, N.R. %K disturbance %K land use change %K LTER-PIE %B Conference proceedings of the meeting of Geocomputation %C Ann Arbor, MI. USA %P 6 %G eng %M PIE187 %] NSF-LTER-PIE %F Other %0 Journal Article %J Journal of the American Water Resources Association %D 2004 %T Modeling Nitrogen Transport in the Ipswich River Basin, Massachusetts, Using HSPF. %A Filoso,S. %A Vallino, J.J %A Hopkinson, C. %A Rastetter, E. %A Claessens, L. %K HSPF %K inorganic nutrients %K LTER-PIE %K nitrogen transport %K watershed %B Journal of the American Water Resources Association %V 40 %P 1365-1384 %G eng %M PIE122 %] NSF-LTER-PIE %R 10.1111/j.1752-1688.2004.tb01592.x %F Journal Article %0 Journal Article %J Water Resources Research %D 2004 %T N budgets and aquatic uptake in the Ipswich River basin, northeastern Massachusetts. %A Williams, M. %A Hopkinson, C. %A Rastetter, E. %A Vallino, J. %K anthropogenic %K land use %K LTER-PIE %K nitrogen %K uptake %K water quality %B Water Resources Research %V 40 %P 1-12 %G eng %M PIE138 %] NSF-LTER-PIE %R 10.1029/2004WR003172 %F Journal Article %0 Journal Article %J Limnology and Oceanography %D 2004 %T Role of wetlands and developed land use on dissolved organic nitrogen concentrations and DON / TDN in northeastern U.S. rivers and streams %A Pellerin, B.A. %A Wollheim, W. %A Hopkinson, C. %A McDowell, W. %A Williams, M. %A Vorosmarty, C. %A Daley, M. %K dissolved organic nitrogen %K land use %K LTER-PIE %K watershed %K wetlands %B Limnology and Oceanography %V 49 %P 910-918 %G eng %M PIE130 %] NSF-LTER-PIE %R 10.4319/lo.2004.49.4.0910 %F Journal Article %0 Conference Proceedings %B AGU Chapman Conference %D 2004 %T The Salt Marsh Geomorphology: Physical and Ecological Effects on Landform %A Fagherazzi, S. %A Torres, R. %A Hopkinson, C. %A vanProosdij, D. %K disturbance %K geomorphology %K LTER-PIE %K organic matter %K salt marsh %B AGU Chapman Conference %I EOS %C Halifax, Nova Scotia, Canada %V 86 %P 57-58 %8 October 9-13, 2004 %G eng %M PIE149 %] NSF-LTER-PIE %F Journal Article %0 Conference Proceedings %B Conference proceedings of the meeting of the University Consortium for Geographic Information Science %D 2004 %T Visualizing the rate at which the accuracy of a land change prediction decays. %A Versluis, A.J. %A Pontius, R.G., Jr. %A Malizia, N.R. %K land use %K LTER-PIE %K model %K Validation %B Conference proceedings of the meeting of the University Consortium for Geographic Information Science %C Silver Spring, MD %P 29 %G eng %M PIE137 %] NSF-LTER-PIE %F Other %0 Journal Article %J Biological Bulletin %D 2003 %T Importance of metabolism in the development of salt marsh ponds. %A Johnston, M. E. %A Cavatorta, J.R. %A Hopkinson, C.S. %A Valentine, V. %K LTER-PIE %K metabolism %K oxygen %K salt marsh ponds %B Biological Bulletin %V 205 %P 248-249 %G eng %M PIE104 %] NSF-LTER-PIE %R 10.2307/1543278 %F Journal Article %0 Journal Article %J Biological Bulletin %D 2003 %T Modeling microbial consortiums as distributed metabolic networks %A Vallino, J.J. %K LTER-PIE %K metabolism %K microbes %K model %B Biological Bulletin %V 204 %P 174-179 %G eng %M PIE115 %] NSF-LTER-PIE %R 10.2307/1543554 %F Journal Article %0 Journal Article %J Biological Bulletin %D 2003 %T Patterns of sedimentation in a salt marsh-dominated estuary. %A Cavatorta, J. %A Johnston, M. %A Hopkinson, C.S. %A Valentine, V. %K estuary %K LTER-PIE %K salt marsh %K sedimentation %B Biological Bulletin %V 205 %P 239-241 %G eng %M PIE93 %] NSF-LTER-PIE %R 10.2307/1543274 %F Journal Article %0 Journal Article %J Biogeochemistry %D 2003 %T Pre-industrial and contemporary fluxes of nitrogen through rivers: A global assessment based on typology %A Green, P.A. %A Vorosmarty, C.J. %A Meybeck, M. %A Galloway, J.N. %A Peterson, B.J. %A Boyer, E.W. %K anthropogenic loading %K global %K inorganic nutrients %K LTER-PIE %K nitrogen %K nitrogen budget %K nitrogen yields %K rivers %K watershed %B Biogeochemistry %V 68 %P 1-35 %G eng %M PIE99 %] NSF-LTER-PIE %R 10.1023/B:BIOG.0000025742.82155.92 %F Journal Article %0 Journal Article %J Limnology and Oceanography %D 2003 %T Processing watershed-derived nitrogen in a well-flushed New England estuary. %A Tobias, C.R. %A Cieri, M. %A Peterson, B.J. %A Deegan, L.A. %A Vallino, J. %A Hughes, J. %K estuary %K LTER-PIE %K nitrogen %K watershed %B Limnology and Oceanography %V 48 %P 1766-1778 %G eng %M PIE113 %] NSF-LTER-PIE %R 10.4319/lo.2003.48.5.1766 %F Journal Article %0 Journal Article %J Applied Environmental Microbiology %D 2003 %T Rapid screening for freshwater bacterial groups using reverse line blot hybridization %A Zwart, G. %A van Hannen, E.J. %A Kamst-van Agerveld, M.P. %A van der Gucht, K. %A Lindstrom, E.S. %A Van Wichelen, J. %A Lauridsen, T. %A Crump, B.C. %A Han, S.K. %A Declerck, S. %K bacteria %K freshwater %K genome %K LTER-PIE %B Applied Environmental Microbiology %V 69 %P 5875-5883 %G eng %M PIE118 %] NSF-LTER-PIE %R 10.1128/AEM.69.10.5875-5883.2003 %F Journal Article %0 Book Section %B The Role of Models in Ecosystems Science %D 2003 %T The Role of Models in Addressing Coastal Eutrophication Problems %A Giblin, A. E. %A Vallino, J. %E C.D. Canham %E J.J. Cole %E W.K. Lauenroth %K coastal eutrophication %K computer modeling %K inorganic nutrients %K LTER-PIE %B The Role of Models in Ecosystems Science %I Princeton University Press. %P 327-343 %G eng %M PIE98 %] NSF-LTER-PIE %F Book Section %0 Journal Article %J Deep Sea Research II %D 2002 %T Decomposition of dissolved organic matter from the continental margin %A Hopkinson, C.S. %A Vallino, J. %A Nolin, A. %K decomposition %K dissolved organic matter %K LTER-PIE %B Deep Sea Research II %V 49 %P 4461-4478 %G eng %M PIE79 %] NSF-LTER-PIE %R 10.1016/S0967-0645(02)00125-X %F Journal Article %0 Journal Article %J Estuaries %D 2002 %T Denitrification and the stoichiometery of nutrient regeneration in Waquoit Bay, MA %A LaMontange, M.G. %A Giblin, A.E. %A Valiela, I. %K denitrification %K LTER-PIE %K nutrient regeneration %B Estuaries %V 25 %P 272-281 %G eng %M PIE82 %] NSF-LTER-PIE %R 10.1007/BF02691314 %F Journal Article %0 Journal Article %J Aquatic Microbial Ecology %D 2002 %T Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of freshwater lakes and rivers. %A Zwart, G. %A Crump, B.C. %A Kamst-van Agterveld, M.P. %A Hagen, F. %A Han, S.K. %K 16S rRNA %K bacteria %K genome %K lakes %K LTER-PIE %K population dynamics %K rivers %B Aquatic Microbial Ecology %V 28 %P 141-155 %G eng %M PIE91 %] NSF-LTER-PIE %R 10.3354/ame028141 %F Journal Article %0 Book Section %B Science and Integrated Coastal Management %D 2001 %T Group 4: Unifying concepts for integrated coastal management. %A Emeis, K. C. %A Benoit, J.R. %A Deegan, L. %A Gilbert, A.J. %A Lee, V. %A Glade, J.M. %A Meybeck, M. %A Olsen, S.B. %A Bodungen, B. Von %E B. Von Bodungen %E R. K. Turner %K coastal management %K LTER-PIE %B Science and Integrated Coastal Management %I Dahlem University Press %C Berlin %G eng %M PIE56 %] NSF-LTER-PIE %F Book Section %0 Book Section %B Science and Integrated Coastal Management %D 2001 %T The use of models in integrated resource management in the coastal zone. %A Deegan, L. A. %A Kremer, J. %A Webler, T. %A Brawley, J. %E B. Von Bodungen %E R. K. Turner %K coastal zone %K LTER-PIE %K resource management %B Science and Integrated Coastal Management %I Dahlem University Press %C Berlin %G eng %M PIE55 %] NSF-LTER-PIE %F Book Section %0 Journal Article %J Journal of Marine Research %D 2000 %T Improving marine ecosystem models: Use of data assimilation and mesocosm experiments. %A Vallino, J. %K ecosystem %K LTER-PIE %K marine %K mesocosm %K model %B Journal of Marine Research %V 58 %P 117-164 %G eng %M PIE51 %] NSF-LTER-PIE %R 10.1357/002224000321511223 %F Journal Article %0 Book Section %B Estuarine Science, A Synthetic Approach to Research and Practice %D 2000 %T Linking biogeochemical processes to higher trophic levels %A Kremer, J. %A Kemp, W. %A Giblin, A. %A Valiela, I. %A Seitzinger, S. %A Hoffman, E. %E J. Hobbie %K biogeochemical cycles %K food web %K LTER-PIE %K trophic %B Estuarine Science, A Synthetic Approach to Research and Practice %I Island Press %C Washington, DC %P 299-246 %G eng %M PIE40 %] NSF-LTER-PIE %F Book Section %0 Book Section %B Estuarine Science: A Synthetic Approach to Research and Practice %D 2000 %T Macro-scale models of water and nutrient flux to the coastal zone %A Vorosmarty, C. %A Peterson, B. %E J. Hobbie %K coast %K LTER-PIE %K model %K nutrient %K water %B Estuarine Science: A Synthetic Approach to Research and Practice %I Island Press %C Washington, DC %P 43-80 %G eng %M PIE52 %] NSF-LTER-PIE %F Book Section %0 Journal Article %J Biological Bulletin %D 2000 %T Modeling the effects of land-use change on nitrogen biogeochemistry in the Ipswich watershed, Massachusetts %A Kirkby, R. %A Claessens, L. %A Hopkinson, Jr., C. %A Rastetter, E. %A Vallino, J. %K Ipswich River %K land use %K LTER-PIE %K model %K nitrogen %B Biological Bulletin %V 199 %P 218-219 %G eng %M PIE39 %] NSF-LTER-PIE %R 10.2307/1542907 %F Journal Article %0 Book Section %B Proceedings of the 4th International Conference on Integrating Geographic Information Systems and Environmental Modeling: Problems, prospects, and Needs for Research %D 2000 %T Scenarios of land-use change and nitrogen release in the Ipswich watershed, Massachusetts, USA %A Pontius, R.G., Jr. %A Claessens, L. %A Hopkinson, C. %A Marzouk, A. %A Rastetter, E.B. %A Schneider, L.C. %A Vallino, J. %E B. O. Parks %E K. M. Clarke %E M. P. Crane %K land use change %K LTER-PIE %K nitrogen %B Proceedings of the 4th International Conference on Integrating Geographic Information Systems and Environmental Modeling: Problems, prospects, and Needs for Research %I Cooperative Institute for Research in Environmental Science %C Boulder, CO %G eng %M PIE46 %] NSF-LTER-PIE %F Book Section %0 Journal Article %J Biological Bulletin %D 2000 %T Solute dynamics in storm flow of the Ipswich River Basin: Effects of land use. %A Perring, A. %A Williams, M. %A Hopkinson Jr., C. %A Rastetter, E. %A Vallino, J. %K Ipswich River %K land use %K LTER-PIE %K solute chemistry %K storm flow %B Biological Bulletin %V 199 %P 219-221 %G eng %M PIE45 %] NSF-LTER-PIE %R 10.2307/1542908 %F Journal Article %0 Book Section %B Estuarine Science: A Synthetic Approach to Research and Practice %D 2000 %T Synthesizing drainage basin inputs to coastal systems. %A Fisher, T. R. %A Correll, D. %A Costanza, R. %A Hollibaugh, J. %A Hopkinson, C. %A Howarth, R. %A Rabalais, N. %A Richey, J. %A Vorosmarty, C. %A Wiegert, R. %E J. Hobbie %K LTER-PIE %K watershed %B Estuarine Science: A Synthetic Approach to Research and Practice %I Island Press %C Washington, DC %P 81-105 %G eng %M PIE29 %] NSF-LTER-PIE %F Book Section %0 Journal Article %J Biological Bulletin %D 1999 %T Ipswich River nutrient dynamics: Preliminary assessment of a simple nitrogen-processing model %A Pease, K. M. %A Claessens, L. %A Hopkinson, C. %A Rastetter, E. %A Vallino, J. %A Kilham, N. %K Ipswich River %K land use %K LTER-PIE %K modeling %K nutrient dynamics %B Biological Bulletin %V 197 %P 289-290 %G eng %M PIE22 %] NSF-LTER-PIE %R 10.2307/1542657 %F Journal Article %0 Journal Article %J Biological Bulletin %D 1999 %T Long-term effect of municipal water use on the water budget of the Ipswich River basin %A Canfield, S. %A Claessens, L. %A Hopkinson, C.S. %A Rastetter, E. %A Vallino, J. %K Ipswich %K LTER-PIE %K municipal %K rivers %K water %K water usage %B Biological Bulletin %V 197 %P 295-297 %G eng %M PIE13 %] NSF-LTER-PIE %R 10.2307/1542661 %F Journal Article %0 Conference Proceedings %B Proceedings of the 3rd International Symposium on Ecohydraulics %D 1999 %T A non-linear inverse technique to estimate estuarine ecosystem metabolism from whole system oxygen measurements. %A Vallino, J. %A Hopkinson, C.S. %A Garritt, R. %A Tucker, J. %K estuary %K LTER-PIE %K metabolism %K model %K oxygen %B Proceedings of the 3rd International Symposium on Ecohydraulics %C Salt Lake City, UT %8 July, 1999 %G eng %M PIE24 %] NSF-LTER-PIE %F Other %0 Book Section %B Asian Change in the Context of Global CHange: Impacts of Natural and Anthropogenic Changes in Asia on Global Biogeochemical Cycles %D 1998 %T Drainage basins, river systems, and anthropogenic change: the Chinese example %A Vorosmarty, C. J. %A Li, C. %A Sun, J. %A Dai, Z. %E J. Galloway %E J. Melillo %K anthropogenic %K LTER-PIE %K model %K river %B Asian Change in the Context of Global CHange: Impacts of Natural and Anthropogenic Changes in Asia on Global Biogeochemical Cycles %I Cambridge University Press %C Cambridge %P 210-244 %G eng %M PIE10 %] NSF-LTER-PIE %F Book Section %0 Journal Article %J Estuarine, Coastal and Shelf Science %D 1998 %T Estimation of dispersion and characteristic mixing times in Plum Island Sound Estuary %A Vallino, J. J. %A Hopkinson, C.S. %K average age %K average esidence time %K average transit time %K dispersion %K estuary %K LTER-PIE %K Massachusetts coast %K tidal prism %B Estuarine, Coastal and Shelf Science %V 46 %P 333-350 %G eng %M PIE9 %] NSF-LTER-PIE %R 10.1006/ecss.1997.0281 %F Journal Article %0 Journal Article %J Biogeochemistry %D 1998 %T Terrestrial inputs of organic matter to coastal ecosystems: An intercomparison of chemical characteristics and bioavailability %A Hopkinson, C. S. %A Buffam, I. %A Hobbie, J. %A Vallino, J. %A Perdue, M. %A Eversmeyer, B. %A Prahl, F. %A Covert, J. %A Hodson, R. %A Moran, M.A. %A Smith, E. %A Baross, J. %A Crump, B. %A Findlay, S. %A Foreman, K. %K elemental composition %K lability %K organic carbon %K organic matter %K organic nitrogen %K PIE LMER %K rivers %B Biogeochemistry %V 43 %P 211-234 %G eng %M PIE4 %R 10.1023/A:1006016030299 %F Journal Article