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1. Introduction  

The Plum Island Ecosystems (PIE) site consists of a linked watershed-marsh-estuarine system 

located north of Boston, Massachusetts. The brackish and saline tidal wetlands of the PIE site 

form the major portion of the “Great Marsh”, the largest contiguous acreage of intact marsh on 

the northeast coast of the United States. However, recent studies have shown that the marsh in 

PIE is under threats from rising sea level. Triggered by global warming, sea level rise is leading 

to pond expansion and channel widening, which subsequently alters the shapes of tidal marshes. 

Geomorphic change of the marshes will potentially affect the whole regional ecological process. 

The quantitative and accurate mapping over marsh landscape is therefore of extreme importance 

for understanding the implication of marsh change as well as predicating the future change. Also, 

river and pond network information are important as they can be used to analyze the relationship 

between water level rise and marsh change. 

 

My internship is about using advanced GIS and remote sensing technology to quantify various 

land cover types in the Plum Island Ecosystems, and to characterize the changes happening 

among these types. The change of marsh and ponds usually happens at a fine spatial scale given 

a time interval of less than a decade. Thus images with spatial resolution of less than 1 meter are 

preferred in this project. However, the use of fine resolution imagery poses new challenges 

because it can produce greater within-class variance and lower classification reliability. This 

problem can be worse in heterogeneous landscapes such as marsh mosaics consisting of various 

land cover types such as soil, water, marsh.  Another challenge of this project is mapping marsh 

species. We want to distinguish between two primary marsh types, specifically Spartina 

Alternflora and Spartina Patens. However, little is known about their spectral difference in 

remotely sensed data due to the lack of literature. This suggests both an innovative method 

design and exhaustive field work are required in order to reliably discriminate these two 

dominant marsh species. The third difficulty of this project is at accurately mapping the river 

network. It is difficult to map a complete river network from aerial photos because most of the 

images were collected at low tides when tidal flats are exposed. Also, leaves often cover small 

ditches, making it difficult to discern river networks from remote sensing images.   

The objectives of this internship are two-fold. First is to design a novel mapping approach using 

object-based classification. Object-based classification firstly subdivides images into clusters of 



pixels called segments, which are homogeneous in themselves relative to nearby regions, and 

then uses the segments as the analysis units. Second is to delineate the river network by using 

fine-resolution topographic maps generated from Light Detection and Ranging (LIDAR) data. 

LiDAR sensor has the capability of penetrating the water surface to measure directly water 

depths in clear water environments (Höfle et al., 2009), thus can provide representation of 

topographic features.  

 

2. Dataset and preprocessing 

Two fine resolution images came from MassGIS, the state GIS agency of Massachusetts 

(MassGIS, 2016).  Fine-resolution topographic data was obtained from the satellite data manager 

(Hap Garritt hgarritt@mbl.edu) at the Marine Biological Lab, Woods Hole MA. Two fine-

resolution aerial datasets were collected respectively on April 9th, 2005 (Four bands: Red, 

Green, Blue, Near-infrared; resolution: 0.5m), and on April 15-30, 2013 (Four bands: Red, 

Green, Blue, Near-infrared; resolution: 0.3m).  We resampled the image of the year of 2013 into 

the resolution 0.5. Due to both the large image size (32000 rows by 32000 columns), we split 

each image into 16 tiles. Using tile-by-tile processing enables using suitable classification 

parameter setting for each tile instead of using only one global parameter setting for the whole 

image, and also facilitates manual refinement subsequent to classification.    

Fine-resolution topographic data were generated by using Terrasolid’s TerraScan Lidar 

processing software, based on airborne LiDAR data collected on April 19th to 25th, 2005.  

 

3. Method 

3.1 Field work 

The fieldwork aims mainly at collecting ground information to assist in training sample selection 

for subsequent object-based classification. Considering our budget and project duration, our 

fieldwork didn’t perform exhaustive sampling for each class, but focused on two marsh types 

that are the most confused among all categories from aerial images. Forty sampling points for 

these two marsh species (Spartina Alternflora: 17 points; Spartina Patens: 23 points) were 

collected along the Rowley River.  Through analyzing these sample points in the 2013 imagery, 

we found Spartina Alternflora appears to be black or dark green in the true color composite 

image, while Spartina Patens appeaers gray.  This is because Spartina Alternflora are often more 

spatially sparse than Spartina Patens, and the water in the gaps among Spatina alternflora 

absorb electromagnetic energy and make the surface reflectance much lower than Patens. In the 

subsequent supervised classification procedure, we used this finding to collect enough training 

samples for Spatina alterniflora and Spatina patens marsh. For the other land cover types, we 

applied visual inspection to select samples because those categories are discernable from high-

resolution images.    

 

3.2 Object-based classification approach 
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As mentioned in introduction, salt marshes (both Spatina alterniflora and Spatina patens) are 

very spectrally similar with grass. To avoid misclassification led by this problem, a wetland 

mask is used to separate marsh area from other land cover types. This mask map is downloaded 

from MassGIS (2016). Because the wetland map has questionable accuracy, around 20 hours 

was spent first to manually refine this mask using our latest 2013 fine-resolution image. After the 

‘wetland’ part and ‘no-wetland’ part were separated from the original image, object-based 

classification was performed for each part. For the ‘wetland’ part, we defined the classification 

system as four categories, i.e. ‘Water’, ‘Tidal flats/soil’, ‘Spartina alterniflora’ and ‘Spartina 

patens’. For the ‘non-wetland’ part,  we defined five categories, i.e. ‘water’, ‘Tidal flats/soil’, 

‘Trees’, ‘Grass’ and ‘Impervious’. This approach enables separately classifying ‘grass’ and two 

marsh species without confusing these two.  

 
Figure 1 the schematic representation of our object-based classification approach by using 

wetland mask.  

Object-based classification was performed using the module ‘Example-based feature selection’ 

in the software Exelis Visual Information Solutions 5.0 (ENVI 5.0).  The following is the 

detailed description for object-based classification. First, the image was segmented into many 

homogeneous ‘objects’ by using a segmentation technique; the best parameters for segmentation 

were determined by a trial-and-error procedure. Then, we selected ‘blue band’, ‘green band’, 

‘red band’, ‘NIR’ and ‘NDVI’ as five properties for each object, and performed supervised 

classification using k-NN algorithm. For more details, we refer readers to the help document in 

ENVI software.   

We applied the procedure described above to every tile for each image. After classification, 

approximately 30 additional hours were taken to perform manual edition for each map in order to 

guarantee the thematic accuracy in our final maps. 

 

3.3 Water network generation 

The whole water network was generated using Arc Hydro package 

(http://resources.arcgis.com/en/communities/hydro/01vn0000000s000000.htm) in ArcGIS 

software. We followed the procedure: (1) DEM Reconditioning; (2) Fill sinks; (3) Flow 

direction; (4) Flow accumulation; (5) Stream definition; (6) Stream segmentation. Additional 20 

hours were spent on manual edition based on the latest fine-resolution 2015 image after we 

processed topographic data in Arc Hydro.  

 



4. Result and analysis 

 
4.1 Land cover and water network maps 

 

         
(a) 2005                                                  (b) 2013 

Figure 2 Land-cover maps of 2005 (a) and 2013 (b) for Plum Island Ecosystems.  

 
Figure 3 Water network map for Plum Island Ecosystems. Tthe background image is the 

true color composite of the fine-resolution aerial image of the year of 2013.  



 

4.2 Change analysis 

Table 1 summarizes individual class area and change statistics from 2005 to 2013. Water area 

decreased approximately 666 ha (30%), while Tidal flats & Soil increased 527 ha (134%). This 

is because these two images were collected at different tidal times. The 2013 image has lower 

tide, so less water and more soil were exposed at 2013 compared with 2005. The area for two 

marsh species both experienced a slight increase (Spartina alterniflora increased 99 ha; Spartina 

patens increased 105 ha), which supports the previous hypothesis that salt marshes are able to 

keep with sea level rise (Morris et al, 2013). Table 1 indicates is a large area of exchange 

between Spartina alterniflora and Spartina patens despite their relatively consistent total area: 

474 ha of Spartina alterniflora transitioned to Spartina patens while 455 ha of Spartina Patens 

transitioned to Spartina alterniflora. Impervious surface experienced a slight decrease (13 ha), 

which is counter to intuition. We believed that the decrease might be related to classification 

inconsistency between the two dates.   

 

 

 

Table 1 Transitions from 2005 to 2013 in hectares 

 

2013  

2005 Water 

Tidal 

flats & 

Soil 

Spartina 

alterniflora 

Spartina 

patens Trees Grass Impervious 

2005 

Total 

Water 1326.29 595.82 126.49 94.14 12.61 3.08 16.59 2175.03 

Tidal 

flats\Soil 80.69 187.24 60.60 47.93 10.20 2.64 4.87 394.17 

Spartina 

alterniflora 47.68 42.83 472.94 473.63 37.11 2.41 2.11 1078.71 

Spartina 

patens 38.65 46.19 455.10 1923.72 24.41 3.86 6.77 2498.69 

Trees 13.47 23.59 52.52 32.12 497.90 32.01 14.24 665.85 

Grass 0.55 0.63 8.20 24.16 16.83 44.01 1.60 95.98 

Impervious 2.02 24.55 2.01 7.73 15.80 7.12 20.17 79.40 

2013 Total 1509.36 920.84 1177.85 2603.43 614.88 95.13 66.34 6987.83 

 

5. Conclusion 

 

Fine-resolution aerial image and topological processing is still a very challenging topic for the 

remote sensing and GIS community. A variety of errors in the intermediate maps mainly came 

from inappropriate segmentation scale, inefficient training samples, spectral variability within 

geographic objects, etc. Therefore, the intermediate maps required many hours of manual 

corrections based on visual inspection. Error concerning change are even more complicated to 

understand due to the inconsistency among multiple classification processes between the two 

time points. This research shows a procedure for generating fine-resolution land-cover map and 

water network map for a complex marsh landscape, which could be used in the future for similar 

fine-resolution marsh mapping.  



 

All the maps we created have been submitted to the PIE data manager for official inclusion in the 

PIE database. Also, Professor Pontius is using the data during his course and his students will use 

the data for American Association of Geographers Annual meeting presentations during spring 

2017. Future research will focus on how to alleviate the impacts of the inconsistency among 

independent mapping processes for land cover change characterization.  
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