PIE LTER Publications

Found 443 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Acinas S.G., Klepac-Ceraj K., Hunt D.E., Pharino C., Ceraj C., Distel D.L., Polz M.F..  2004.  Fine-scale phylogenetic architecture of a complex bacterial community.. Nature. 430:551-554.
Adjei W..  2010.  Testing the sensitivity of land change results to category aggregation. M.S.
Agnew A.M., Shull D.H., Buchsbaum R.N..  2003.  Growth of a salt marsh invertebrate on several species of marsh grass detritus.. Biological Bulletin. 205:238-239.
Agrawal A..  2001.  Uncertainty analysis of land-use change modeling in GIS.
Aldrich S..  2002.  Water quality as a function of land use..
Aldwaik S., Jr R.G.Pontius.  2012.  Intensity Analysis to Unify Measurements of Size and Stationarity of Land Changes by Interval, Category, and Transition.. Landscape and Urban Planning. 106:103-114.
Aldwaik S., Jr R.G.Pontius.  2013.  Map errors that could account for deviations from a uniform intensity of land change. International Journal of Geographical Information Science.
Aldwaik S..  2012.  Fundamental concepts of intensity analysis to understand changes among categories. Ph.D.:131.
Aldwaik S.Z., Onsted J.A., Jr R.G.Pontius.  2014.  Behavior-based aggregation of land categories for temporal change analysis. International Journal of Applied Earth Observation and Geoinformation. 35:229-238.
Alexander R.B., Bohlke J.F., Boyer E.W., David M., Harvey J.W., Mulholland P.J., Seitzinger S.P., Tobias C.R., Tonitto C., Wollheim W.M..  2009.  Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes. Biogeochemistry. 93:91-116.
Algar C.K., Vallino J.J.  2014.  Predicting microbial nitrate reduction pathways in coastal sediments. Aquatic Microbial Ecology. 71:223-238.
Allee R.J., Dethier M., Brown D., Deegan L.A., Ford R.G., Hourigan T.F., Maragos J., Schoch C., Sealey K., Twilley R. et al..  2000.  Marine and Estuarine Ecosystem and Habitat Classification.
Alpern J..  2010.  How to tell when map difference indicates land change. MS Degree
Avolio M.L, La Pierre K.J., Houseman G.R., Koerner S.E., Grman E., Isbell F., Johnson D.S., Wilcox K.R..  2015.  A framework for quantifying the magnitude and variability of community responses to global change drivers. EcosphereEcosphere. 6
B
Bahr M., Crump B.C., Klepac-Ceraj V., Teske A.P., Sogin M.L., Hobbie J.E.  2005.  Molecular characterization of sulfate-reducing bacteria in a New England salt marsh.. Environmental Microbiology. 7:1175-1185.
Bain D.J., Hale R.L., Wollheim W.M..  2012.  Urban Geochemistry: Hotbeds of Biogeochemical Diversity: Insights from Urban Long-Term Ecological Research Sites. Elements. 8:435-438.
Bain D., Green M.B., Campbell J., Chamblee J., Fraterrigo J., Kaushal S.S., Martin S., Jordan T., Parolari A., Sobczak W.V. et al..  2012.  Legacy effects material flux: structural catchment changes predate long-term studies.. Bioscience. 62:575-584.
Baker H.K., Nelson J, Leslie H.M..  2016.  Quantifying striped bass (Morone saxatilis) dependence on saltmarsh-derived productivity using stable isotope analysis. Estuaries and Coasts.
Barnes R.T., Raymond P.A.  2009.  The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds.. Chemical Geology. 266:318-327.
Battin T.J., Kaplan L., Findlay S., Hopkinson C.S., Marti E., Packman A., Newbold J.D., Sabater F..  2008.  Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience. 1:95-100.
Bauer J.E., Cai W-J., Raymond P.A, Bianchi T.S., Hopkinson C.S., Regnier P.A.G..  2013.  The changing carbon cycle of the coastal ocean.. Nature. 504:61-70.
Beaulieu J.J, Tank J.L., Hamilton S.K, Wollheim W.M., Hall R., Mulholland P, Peterson B., Ashkenas L., Cooper L., Dahm C. et al..  2011.  Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Science. 108:214-219.
Bernhard A.E., Tucker J., Giblin A.E., Stahl D.A..  2007.  Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environmental Microbiology. 9:1439-1447.
Bernhard A., Landry Z.C., Blevins A., Torre J.R.de al, Giblin A.E., Stahl D.A..  2010.  Abundance of ammonia-oxidizing Archaea and Bacteria along an estuarine salinity gradient in relationship to potential nitrification rates.. Applied and Environmental Microbiology. 76:1285-1289.
Bernhard A., Donn T.M., Giblin A.E., Stahl D.A..  2005.  Loss of Diversity of Ammonia-Oxidizing Bacteria Correlates with Increasing Salinity in an Estuary System.. Environmental Microbiology. 7:1289-1297.

Pages