PIE LTER Publications

Found 438 results
Johnson D.S., Heard R..  2017.  Bottom-up control of parasites. Ecosphere. 8
Fagherazzi S., Viggato T., Vieillard A.M., Mariotti G., Fulweiler R.W..  2017.  The effect of evaporation on the erodibility of mudflats in a mesotidal estuary. Estuarine, Coastal and Shelf Science. 194:118-127.
Jr R.G.Pontius, Krithivasan R., Sauls L., Yan Y., Zhang Y..  2017.  Methods to summarize change among land categories across time intervals. Journal of Land Use ScienceJournal of Land Use Science. 12:218-230.
Kennedy C.G., Mather M.E., Smith J.M..  2017.  Quantifying integrated, spatially-explicit, ecologically-relevant, physical heterogeneity within an estuarine seascape. Estuaries and CoastsEstuaries and Coasts. 40:1385-1397.
Rochlin I., Morris J.T..  2017.  Regulation of salt marsh mosquito populations by the 18.6-year lunar-nodal cycle. Ecology.
Jr R.G.Pontius, Huang J., Jiang W., Khallaghi S., Lin Y., Liu J., Quan B., Ye S..  2017.  Rules to write mathematics to clarify metrics such as the land use dynamic degrees. Landscape EcologyLandscape Ecology. 32:2249-2260.
Johnson D.S., Williams B.L..  2017.  Sea level rise may increase extinction risk of a saltmarsh ontogenetic habitat specialist. Ecology and Evolution.
Spivak A.C., Gosselin K., Howard E., Mariotti G., Forbrich I., Stanley R., Sylva S.P..  2017.  Shallow ponds are heterogeneous habitats within a temperate salt marsh ecosystem. Journal of Geophysical Research: Biogeosciences. 122
Ganju N.K., Defne Z., Kirwan M.L., Fagherazzi S., D'Alpaos A., Carniello L..  2017.  Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nature Communications. 8
Kearney W.S., Mariotti G., Deegan L.A, Fagherazzi S..  2017.  Stage-discharge relationship in tidal channels. Limnology and Oceanography. 15:394-407.
McDermott J..  2017.  Use of one versus two time points for calibration of land change models. M.S.
Philbrick S..  2016.  Analyzing the response of land change models to intractable problems. M.S.
Jr. J.D.Edwards.  2016.  Applicability of LiDAR Technology in Saltmarshes: Landscape-Scale Predictive Models to Local-Scale Biomass Estimation. M.S.:134.
Morris J.T., Barber D.C., Callaway J.C., Chambers R., Hagen S.C., Hopkinson C.S., Johnson B.J., Megonigal P., Neubauer S.C., Troxler T. et al..  2016.  Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth's Future. 4:110-121.
Kennedy C.G., Mather M.E., Smith J.M., Finn J.T., Deegan L.A..  2016.  Discontinuities concentrate mobile predators: Quantifying organism-environment interactions at a seascape scale. Ecosphere. 7(2)
Wollheim W.M..  2016.  From Headwaters to rivers to river networks: scaling in stream ecology. Streams In a Changing Environment. :349-388.
Graves C.J., Makrides E., Schmidt V., Giblin A.E., Cardon Z.G., Rand D.M..  2016.  Functional responses of salt marsh microbial communities to long-term nutrient enrichment. Applied and Environmental Microbiology. 82:2862-2871.
Spivak A.C., Ossolinski J..  2016.  Limited effects of nutrient enrichment on bacterial carbon sources in salt marsh tidal creek sediments. Marine Ecological Progress Series. 544:107-130.
Leonardi N., Ganju N.K., Fagherazzi S..  2016.  A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. PNAS. 113:64-68.
Moulton O.M., Altabet M.A., Beman J.M., Deegan L.A., Lloret J., Lyons M.K., Nelson J.A., Pfister C.A..  2016.  Microbial associations with macrobiota in coastal ecosystems: patterns and implications for nitrogen cycling. Frontiers in Ecology and the Environment. 14:200-208.
Kearns P., Angell J.H., Howard E., Deegan L.A., Stanley R.H., Bowen J.L..  2016.  Nutrient enrichment induces dormancy and decreases diversity of active bacteria. Nature Communications. 7
Kirwan M.L., Temmerman S., Skeehan E.E., Guntenspergen G.R., Fagherazzi S..  2016.  Overestimation of marsh vulnerability to sea level rise. Nature Climate Change.
Baker H.K., Nelson J, Leslie H.M..  2016.  Quantifying striped bass (Morone saxatilis) dependence on saltmarsh-derived productivity using stable isotope analysis. Estuaries and Coasts.
Leonardi N., Defne Z., Ganju N.K., Fagherazzi S..  2016.  Salt marsh erosion rates and boundary features in a shallow Bay. Journal of Geophysical Research: Earth Surface. 121:1861-1875.
Crosby S.C., Sax D., Palmer M.E., Booth H.S., Deegan L.A., Bertness M.D., Leslie H.M..  2016.  Salt marsh persistence is threatened by predicted sea-level rise. Estuarine and Coastal Shelf Science. 181:93-99.